

IECC 2024 EV Charging Infrastructure Requirements

Michael Tillou, PE

May 8th, 2024

PNNL is operated by Battelle for the U.S. Department of Energy

DOE Building Energy Code Program (BECP)

Model Energy

2

• • • •

贫

4

DOE BECP Advancing Energy Codes With Code Change Proposals and Informative Technical Briefs

	Торіс	Description
	EV Charging	Code language for requirements for electric ve and/or capable infrastructure
(((1))) • · · · ·	Load Management	Informative analysis to encourage states to establish code requirements for load mana
** ** *	Energy Credits	Code language for additional energy efficient interactivity measures that go beyond the
食	Demand Response	Code language for thermostats and water requirements to include demand response
	PV Required	Code language for on-site solar photovoltaic re
	Electric Readiness	Code language for requirements electric outlets fuel water heaters, dryers, and cooking equipment
	Zero Emissions	Optional residential and commercial code lang performance-based path to achieve zero emiss

hicle installed, ready,

- o incentivize or agement measures
- ency and gridprescriptive code
- heaters capability
- equirements
- s installed near fossil nent
- uage for a sions

Electric Vehicle Charging for Residential and Commercial Energy Codes Northwest

EV Charging Requirements Tech Brief

Pacific

- Written as an overlay to the IECC 2021
- Developed in collaboration with ICC
- Addresses requirements for both **Commercial and Residential new** construction
- Formed basis for IECC 2024 proposal for EV charging infrastructure

Pacific Northwest	
PNNL-31576	
	Electric Vehicle for Residential Commercial Er Codes Technical Brief
	July 2021 V R Salcido M Tillou E Franconi
	U.S. DEPARTMENT OF ENERGY Prepared for the U.S. Department under Contract DE-AC08-76RL0
Source: energ	gycodes.gov

e Charging and nergy

IECC 2024 EV Charging Working Group Goals

- **Definitions** Incorporate, match, and/or be consistent with definitions in other codes (NFPA 70 / NEC, ICC Building Code, Zoning Code)
- **Requirements Table** Provide proper requirements for different residential and commercial building types with different EV charging profiles and usages.
- Mandatory language Provide technically correct minimum requirements for EV charging infrastructure installation and for energy management (smart / managed charging).

Closely aligned requirements across both the IECC Residential and Commercial provisions

EV Charging Definitions

Key definitions for EV Charging adopted into IECC.

- AUTOMOBILE PARKING SPACE.
- ELECTRIC VEHICLE (EV).
- ELECTRIC VEHICLE CAPABLE SPACE (EV CAPABLE SPACE).
- ELECTRIC VEHICLE READY SPACE (EV READY SPACE).
- ELECTRIC VEHICLE SUPPLY EQUIPMENT (EVSE).
- ELECTRIC VEHICLE SUPPLY EQUIPMENT INSTALLED SPACE (EVSE SPACE).

The same set of definitions was adopted into both the Commercial and Residential provisions and developed to be consistent with definitions in the NFPA 70 / NEC, and the ICC Building Code.

EV Charging Requirements

EV Capable Spaces.

Pacific

Northwes

Install panel capacity and conduit (raceway) to accommodate the future build-out of EV charging

EV Ready Spaces.

Install a full circuit installations including panel capacity, raceway, wiring, receptable, and overprotection devices.

EVSE Spaces. Install EVSE charging stations during new construction

EV Charging Requirements - Residential

Pacific

New one- and two-family dwellings and townhouses with a designated attached or detached garage or other on-site private parking provided adjacent to the dwelling unit:

• Provide one EV capable, EV ready or EVSE space per dwelling unit.

New R-2 occupancies or allocated parking for R-2 occupancies in mixed-use buildings:

Provide EV capable space, EV ready space or EVSE space for 40 percent of the dwelling units or automobile parking spaces, whichever is less.

EV Charging Requirements - Commercial

REQUIRED EV POWER TRANSFER INFRASTRUCTURE

OCCUPANCY	EVSE SPACES	EV READY SPACES	EV CAPA SPAC
Group A	10%	0%	10%
Group B	15%	0%	30%
Group E	15%	0%	30%
Group F	2%	0%	5%
Group H	1%	0%	0%
Group I	15%	0%	30%
Group M	15%	0%	30%
Group R-1	20%	5%	75%
Group R-2	20%	5%	75%
Groups R-3 and R-4	2%	0%	5%
Group S exclusive of parking garages	1%	0%	0%
Group S-2 parking garages	15%	0%	30%

Pacific

EV Charging Capacity Requirements

System capacity. The electrical distribution equipment supplying the branch circuit(s) serving each EV capable space, EV ready space and EVSE space shall:

- Have a calculated load of 7.2 kVA for each space, or
- When controlled by an **energy management system**, have a calculated load not less than 3.3 kVA per space.

Circuit capacity. The branch circuit serving each EV capable space, EV ready space and EVSE space shall:

- Have a rated capacity not less than 50 amperes
- When controlled by an energy management system:
 - Have a minimum capacity of 25 amperes per space, or.
 - Have a minimum capacity of 20 amperes per space for R-2 occupancies where all automobile parking spaces are EV ready spaces or EVSE spaces.

Pacific Northwest

EV Charging Cost Effectiveness

Cost effectiveness was also evaluated using data from a more comprehensive October 2021 EV Charging cost study for the Provence of Ontario, Canada

				NPV of the Future Retrofit Cost in Year x								
	New Cost (2021 US\$)	Future Retrofit Cost (2021 US\$)	Real Discount Rate	2023	2030	2038	2039	2040	2045	2046	2047	2052
Dedicated 40A Circuit		\$ 16,171	7%	\$15,113	\$9,412	\$5,478	\$5,119	\$4,784	\$3,411	\$3,188	\$2,979	\$2,124
(20% FV Ready)	\$ 4,875		5%	\$15,401	\$10,945	\$7,408	\$7,055	\$6,719	\$5,265	\$5,014	\$4,775	\$3,742
			3%	\$15,700	\$12,766	\$10,077	\$9,784	\$9,499	\$8,194	\$7,955	\$7,723	\$6,662
A-share on AOA circuit	\$ 2,863	\$ 8,926	7%	\$8,342	\$5,195	\$3,023	\$2,826	\$2,641	\$1,883	\$1,760	\$1,645	\$1,173
(20% EV Poady			5%	\$8,501	\$6,041	\$4,089	\$3,894	\$3,709	\$2,906	\$2,768	\$2,636	\$2,065
			3%	\$8,666	\$7,046	\$5,562	\$5,400	\$5,243	\$4,522	\$4,391	\$4,263	\$3,677
Dediasted Circuite on 14	\$ 3,833	3 \$ 12,772	7%	\$11,936	\$7,433	\$4,326	\$4,043	\$3,779	\$2,694	\$2,518	\$2,353	\$1,678
(100% EV Ready)			5%	\$12,164	\$8,644	\$5,851	\$5,572	\$5,307	\$4,158	\$3,960	\$3,772	\$2,955
(100% EV Reduy)			3%	\$12,400	\$10,082	\$7,959	\$7,727	\$7,502	\$6,471	\$6,283	\$6,100	\$5,262
2 share on 401 (100%)		\$ 7,759	7%	\$7,252	\$4,516	\$2,628	\$2,456	\$2,296	\$1,637	\$1,530	\$1,430	\$1,019
S-Share on 40A (100%	\$ 2,363		5%	\$7,390	\$5,252	\$3,555	\$3,385	\$3,224	\$2,526	\$2,406	\$2,291	\$1,795
Ev Reauy)			3%	\$7,533	\$6,125	\$4,835	\$4,695	\$4,558	\$3,932	\$3,817	\$3,706	\$3,197
4 charge on 404 (100%)	\$ 1,680	\$ 5,483	7%	\$5,124	\$3,191	\$1,857	\$1,736	\$1,622	\$1,157	\$1,081	\$1,010	\$720
			5%	\$5,222	\$3,711	\$2,512	\$2,392	\$2,278	\$1,785	\$1,700	\$1,619	\$1,269
Ev Reduy)			3%	\$5,323	\$4,328	\$3,417	\$3,317	\$3,220	\$2,778	\$2,697	\$2,619	\$2,259

Study cost data was converted to US\$ using Feb 2022 US/CAN international currency exchange rate.

Source: Electric Vehicle Charging Infrastructure Costing Study October 2021 https://cleanairpartnership.org/cac/wp-content/uploads/2021/10/2-21-050-GTHA-EV-Ready-Costing-Study-2021.10.14.pdf

Installing EV Charging infrastructure at time of construction remains cost effective:

For 18 years at a 7% real discount rate

For 24 years at a 5% real discount rate

At 30 years with a 3% real discount rate

EV Charging Strategies in Energy Codes

Next Steps:

- Expand load sharing allowances based on larger branch circuit capacities. Important for occupancies with 100% EV space requirements to manage infrastructure costs and grid impacts.
- Develop requirements that allow greater flexibility for the installation of different types of chargers (ie: DC Fast charging).

Thank you

Expanding Access to Affordable At-Home EV Charging

How EV-Ready Codes Can Accelerate an Equitable Transition to EVs

Vanessa Warheit, National Lead

EV Charging for All Coalition EV Codes Conference, May 2024 **EVCAC's Mission**

To ensure equitable, safe, and convenient access to affordable EV charging at home and/or at work, for all residents.

Outline

- Introduction
- Equitable, affordable solutions: 4 MFH principles
- Best Practices for Multi-Family charging
- Case studies
- Q&A and Discussion

Electric Vehicle Building Codes Toolkit

A Guide For Adopting Equitable US Codes

bit.ly/EVcodestoolkit

EVs are on an exponential growth curve, everywhere

Electric Vehicle Registrations

EVs Are Affordable

Leasing an electric vehicle is the cheapest option for new car buyers

Used EVs: Volume Rises, Prices Drop

EV CHARGING FOR ALL COALITION

Access: "There's No Place Like Home"

Every Year, 1.5M Potential New US Charging Stations

New Construction Is Least Cost Option

California PEV Owners by Housing Type

EV Infrastructure: Definitions

Definitions: Charging Equipment

EV Supply Equipment (EVSE)

Definitions: Charging Equipment

Portable EVSE Cordset

Definitions: EV Readiness

Make-Ready ≠ EV Ready

Definitions: EV Readiness

Definitions: Power Delivery

Level 1 (L1)

Standard household outlet 20 Amp, 120v AC Driving distance added: 3-4 miles/hour

Low-Power Level 2 (LPL2)

20 Amp, 208/240v AC Driving distance added: 10-13 miles/hour

Full Level 2 (L2)

Similar to a dryer outlet. 40+ Amp, 208/240v AC Driving distance added: 25-30 miles/hour

DC Fast Charging (DCFC)

CHARGI FOR ALL COALITION

24-350kW Driving distance added: 72-1,200 miles/hour

Best Practices for Equitable EV Ready Multi-Family Housing

Types of Charging Access: <u>EV Ready</u> is sweet spot

	Sufficient panel space & load capacity for EV charging	A branch circuit & raceways	Wiring, circuit breaker & charging receptacle	Installed charging station	Can it be used by resident to charge now?
EV Capable or Capable+: actually INcapable! (Also required by code to be 40A)					No, first must get HOA or manager's approval, hire electrician, pull permit & pay for the upgrade.
EV Ready: ready to charge! (can be L1 or L2)					Yes, by using the cordset that comes with their EV (or EVSE if provided).
EVSE or EVCS: Electric Vehicle Service Equipment / Electric Vehicle Charging Station					Yes, by using the provided charging equipment from an ESVP (Electric Vehicle Service Provider).

Levels of Charging Power: <u>LPL2</u> is sweet spot

	Type of Outlet	Typical Circuit Breaker Size (Amps)	Voltage	Kilo- Watt Output (kW)	Miles added per hour of charging	Miles added over 10 hours
Level 1	Standard household outlet	15	120	1.4	~5.6	42-56
Low-Power Level 2	EV charging in MFH	20	208/240	3.8	~15	114-150
Level 2	Stove outlet, EV charging	40	240	7.6	30	220-300
Non-residential: Direct Current Fast Charging (DCFC)	Public & fleet charging	Varies	Varies	24-350	72-1200	N.A.

A Tale of Two EV Drivers

Direct wiring... Key to equitable rates & resilience

California's Intervening Code Cycle (taking effect on July 1), requires direct wiring!

"EV charging receptacles in multifamily parking facilities at **assigned parking spaces** shall be provided with a **dedicated branch circuit connected to the dwelling unit's electrical panel**, unless determined as infeasible by the project builder or designer and subject to concurrence of the local enforcing agency."

FOUR PRINCIPLES OF EQUITY-CENTERED EV CHARGING FOR MULTI-FAMILY HOUSING

- Provide <u>each household unit</u> that has parking with <u>at least one EV Ready</u> charging space.
 Vs. requiring a certain <u>percentage</u> of parking <u>spaces</u> to be EV Ready or EV "Capable"
- **2. Require at least <u>low-power Level 2</u>** (not full L2) **and EV receptacles** (not necessarily EVSE).

This minimizes cost to builders while providing adequate power and access to residents.

- 3. Wire receptacle or EVSE <u>directly</u> to corresponding household's panel or meter. This allows residents to access utility rates, avoid monopolistic third-party markups, and enjoy the resilience benefits of bidirectional charging. It requires parking to be <u>assigned</u>; this parking can be **unbundled**-paid for separately.
- **4. Install prominent signage at each EV Ready and EV Capable space.** This ensures awareness of the availability of charging so it's not hidden.

Case Studies: Three Code Policy Levers

Regulatory lever: CALGreen

Evolution of CALGreen Building

FOR ALL

COALITION

Code Percentage of EV Access Required in New Construction

Local Policy Lever: City of San Jose Reach Code

San José's new EV reach code for new MFH

- Boosts the % of residential parking that is EV ready from 30 to 100%;
- Removes an obsolete exemption for parking lifts
- Requires all assigned parking to be directly wired to the unit's electrical meter
- Allows an inequitable exemption from the direct-wiring requirement for unbundled parking

MOTHERS OUT FRONT

Local Policy Lever: City of Boston, MA

Local Policy Lever: City of Boston, MA

*	Ø		·@• <i>4</i>	ø⊳}₀	P
ſΩ	•		۲.		\$
\$	ELEC	∲⊕			
\$ 	For n	lents			
	·@•*	4	P	Ø	• •
	₫ ,		Δ	\$ 	\$
(4)	\$	4 €	Ħ	Ę,	4
CITY of E	Transportation				

Requires EVSE-Installed L2 at 25% of parking spaces

Equivalency calculator allows for flexibility, with each parking spot equal to one point. May be offset by:

- Level 1 Chargers
- DCFC (50kw, 125-150kw)
- EV Carshare
- Electric Bike Parking amenities.

Multi-Family Residential Codes Landscape

EV CHARGING FOR ALL COALITION

Source: TRC

EV Ready

EV Capable

EV Charging Installed

Multifamily New Construction EV Codes Summary

Legislative Lever: Illinois EV Charging Act

Illinois EV Charging Act (2023)

- EV Capable for 100% of parking in ALL types of housing.
- Right to charge protections for MFH residents and renters

Illinois' new EV Charging Act brings more equitable charging to renters

By EDF Blogs / Published: June 15, 2023

By Neda Deylami

UPDATE: Since this blog's publication on June 15, 2023, the Chicago City Council has passed an ordinance aligning

State Preemption Laws Are Proliferating...

Texas: HB 2127 (2023) "Death Star Law" – fortunately doesn't affect building codes

Missouri: HB 184 (2023) Passed the House – died in the Senate

Florida: SB 1084 (2024) Passed and Approved by Governor last week

Join EVCAC

- Join our Slack team: bit.ly/EVCACslackMay2024
- Read and share the toolkit: <u>bit.ly/EVcodestoolkit</u>
- Help us connect with funders and clients
- Join the National EV Codes Working Group
- Join our mailing list
- Introduce EVCAC to your networks

Email wwarheit@chargingforall.org

Thank you!

info@chargingforall.org

Equitable Transportation Electrification

May 8, 2024

Linda Khamoushian, Senior Clean Mobility Strategist

At GRID Alternatives, we envision a rapid, equitable transition to a world powered by renewable energy that benefits everyone.

We work to build community-powered solutions to advance economic and environmental justice through renewable energy.

People. Planet. Employment.

"Disadvantaged Communities" determinations directly tied to history of "Redlining" policies and siting of transportation infrastructure (highways) of the 1950s

GRID Alternatives' approach to equitable clean mobility

Prioritize capacity building and wealth building opportunities: community-powered solutions Maximize savings from transitioning off of fossil fuels: using clean, cheap solar energy to charge

clean public transit, e-bikes, and more

Equitable transportation electrification prioritizes <u>people over places</u>

By focusing on the ways people actually use transportation, and prioritizing community needs, we can build a clean transportation future for everyone.

Some of GRID's Involvement with Clean Mobility Programs from 2017 - Present:

Access Clean California

Less pollution, more power

GFO-22-614 - Reliable, Equitable, and Accessible Charging for Multi-family Housing 2.0 (REACH 2.0)

Berkeley E-Bike Equity Project

Climate benefits to Berkeley residents

DRIVING CLEAN

ASSISTANCE PROGRAM

California's Electric Truck Utilization Center

ILDING EV INFRASTRUCTURE

clean vehicle assistance program

Prioritizing Charging \$ in EJ geographies ≠ Equity Benefits

Electric Vehicle Supply Equipment (EVSE)

Public Chargers

EVSE not just the installation of equipment (ports), it also needs:

- Engineering
- Site Permitting
- Designated parking spaces
- Signage
- Electric supply upgrades (transformers, panels, trenching, etc.)
- Installation labor and materials
- Maintenance and Operations
- Network agreements
- Site compliance
- Outreach/engagement of tenants/public
- Data collection

The best time to incorporate EVSE installation, is when you build a new building, but most current EVSE funding programs don't work for new construction.

- Funding often doesn't allow for EVSE in new buildings or doesn't work with long development timetables
- Funding is not 100 cents on the dollar, not receiving full reimbursement and will need to pull from other sources
- Funding has well-intended EVSE requirements that aren't flexible to the varied types of sites and what may be needed at each site different parking setups, available electrical power, etc.

Yes, we need energy and building codes that make for an easier transition to electrification. However, we have to also ask:

- Who is this new development for? Low-income residents or market-rate tenants?
- How does the energy code/building code requirements deter building affordable housing or not?
- What other transportation amenities and enhancements will accelerate equitable transportation electrification at this site?

A better approach - dedicated, additive public dollars to incorporate EVSE into new affordable housing development

Affordable Housing and Sustainable Communities

Integrating affordable homes and sustainable transportation

A better approach - comprehensive equity programming that puts <u>tangible benefits for people at the center</u>

Case Study for GRID's "Maximizing Savings" Approach: Public Charging Program for Income-Qualified Drivers

Main takeaways:

- Successful equitable transportation electrification policies and programs require provisions for <u>both</u> priority places and priority people and their specific needs
- Energy agencies should collaborate with housing agencies to fund EVSE in new affordable housing construction, both in general, and <u>particularly</u> if your state adopts EVSE building code requirements for new housing development

