Water Why It Matters and What We Can Do Introducing Standard 1101 and HERS_{H20} RESNET

Dave Walls International Code Council RESIDENTIAL ENERGY SERVICES NETWORK

Water-Why It Matters

The World *Runs* on Water!

- Water is the most vital natural resource on the planet.
- The average adult human body is 50-65% water, averaging around 57-60%
- It is necessary for human survival and a critical input into our food, manufacturing, and energy systems.
- It sustains the ecosystems and climates upon which both our <u>built</u> and natural world rely.
- We are putting more pressure on freshwater resources than ever.
- Est. world population 7.6B (2018)

Source: Igor A. Shiklomanov, State Hydrological Institute (SHI, St. Petersburg) and United Nations Educational, Scientific and Outural Organisation (UNESCO, Paris), 1999.

The Water Energy Nexus

- Water-related uses account for <u>19%</u> of a western state's electricity consumption
- <u>30%</u> of its natural gas and
- <u>88 billion gallons</u> of diesel fuel every year.
- Water-efficiency measures can reduce water and sewer costs by up to 30 percent.
- Significant savings in energy, chemical and maintenance expenses often follow.

What we can do

• Water Use Habits

- Over irrigating landscaping
- Long showers, letting water run unnecessarily, etc.
- Codes
 - International Plumbing Code
 - International Green Construction Code
 - Water Efficiency Provisions
- Standards
 - ICC/CSA Rainwater
 - BSR/RESNET/ICC

Charge from the RESNET Board - 2015

Create an index that:

- 1. Leverages the advances made in the HERS standard (ICC-301-2014) Appendix A
 - Calculates hot and cold water for all principle fixtures and appliances, requires additional outdoor uses
 - Has compelling technical support
- 2. Is inline with the general HERS methodology
 - Generates a score by comparing the rated home to a reference
 - Reference home is representative of new construction circa 2006
- 3. Provides a low bar for participation by HERS Raters
 - Can be added to a HERS rating for a reasonable incremental cost

Key Objectives for HERS_{H2O}

- Nationwide applicability
- Suitable for both new and existing homes
- Encompasses both indoor and outdoor water efficiency
- Practical and affordable to administer
- Scores usable for quantitative comparison

Timeline of Development

- •RESNET Board Approves Program
- Advisory Council Formed
- •HERS_{H2O} Working Group Formed
- •HERS_{H2O} Working Group Technical Subcommittees formed
- •Initial work begins

- •Technical Guidelines Drafted and Underwent Public Review and Comment Process
- •Inspection Checklist completed
- Inspection guidance doc drafted
- •RESNET/ICC ANSI SDC Formed
- •Planning for Field Testing of Technical Guidelines
- •Working draft of ANSI Standard started

2018 and 2019 Activities

2018

- Guidelines approved by RESNET Board
- Development of WRI Standard
 - •Review of draft Standard by SDC
 - •Public Comment Period
 - •Review/respond to Public Comments
- •Development of HERS_{H20} Implementation Standards
 - •Quality Assurance
 - •Registry
 - •Training
- •6 month pilot phase

•Second round of public comments on Standard 1101

2019

- •Revisions to Inspection checklist and guidance doc
- •Development of HERS_{H20} training
- •Finalize HERS_{H2O} implementation standards
- $\mathrm{HERS}_{\mathrm{H2O}}$ data in RESNET Registry
- •Publication of Standard 1101

Development Process

Technical Guidelines serve as the basis for the Water Rating Index Standard (BSR/RESNET/ICC 1101-201x).

How do Standard 1101 and HERS_{H2O} Relate?

BSR/RESNET/ICC Standard 1101:

- Developed through an ANSI consensus-based process
- RESNET's Standard Development Committee
 1100 is responsible for the development of this standard
- Technical subcommittee also provides recommendations
- Eligible to be adopted by code development and adopting entities

HERS_{H20}:

- RESNET program that will be based on Standard 1101
- Additional program requirements to include:
 - Certification of raters
 - Accreditation of rating providers
 - Quality Assurance oversight
 - Approval of software

Update on Standard 1101

- Summer/Fall-2018: Public comment on PDS-01.
- Spring 2019: Public comment on PDS-02
- Subcommittee has reviewed comments on PDS-02
- SDC 1100 needs to approve response to comments and changes to the standard
- Potential 3rd round of public comments
- Expected final publication later in 2019

Introduction to HERS_{H2O}

Drought- Not the Only Driver for Water Efficiency Efforts

Map for August 16, 2018

Data valid: August 14, 2018 | Author: Richard Heim, NOAA/NCEI

Increases in Water Costs

Water cost increases from 2000-2012:

1.Atlanta: 233%

2.San Francisco: 211%

3.Wilmington: 200%

4.Philadelphia: 164%

5.Portland: 161%

6.Wichita: 153%

7.New York: 151%

8.Waterloo, IA: 145%

9.Binghamton, NY: 143%

10.San Diego and Augusta: 141%

Basic Concept of a Rating

- Automatically generated by software
- Establishes baseline to compare rated home to
- Minimum requirements ~2006 construction practices for plumbing
- Scores ~100 on HERS_{H2O} Index scale

- The "as-built" home
- Components entered by the Rater
- Each component that is more efficient than the reference home will reduce water use and Index score in the rated home.
- Less efficient components will do the opposite.

Scope of the Standard

This Standard will provide a uniform methodology for evaluating, rating and labeling the indoor and outdoor water use performance of <u>one- and two-family dwellings</u>.

Components of a Water Rating

Shower Heads

Kitchen Faucet

Lavatory

Faucets

Clothes Washer

Toilet Flush Volume

Water Softener

Leaks/Other Water Use

Excess Pressure

Pool or Spa

Other Factors Included in the Rating

House Size

Geographic Location

Number of Bedrooms

Lot & Landscape Size

Hot Water Distribution Layout

Hot Water Pipe Insulation

Rainwater and Gray Water

- Not addressed in the Standard
- Explanation included in the Forward
- Committee decision:
 - Insufficient reliable data to quantify the impact of alternative water sources on a home's potable water use
- Goal to include in future revisions
- Reclaimed/Recycled also not included

Calculating the Index Score

 $= \frac{indoor and outdoor gpd for the rated home}{indoor and outdoor gpd for the reference home} *$

100

HERS_{H20} Index

Rating Calculation Methodology

- Grounded in water use data as much as possible
- Indoor reference home based primarily on HERS
- Outdoor reference home based on Residential End Uses of Water Study
- Number of bedrooms used as predictor of occupancy
- Built upon ANSI/RESNET/ICC Standard 301-2014 and Addendum A

Rated Home Credits

Indoor model will respond to:

- More efficient plumbing products
- Efficient Appliances
- More efficient plumbing distribution

Outdoor model will respond to:

- Smaller landscapes (the reference landscape is fixed based on lot size)
- More efficient irrigation technology
 - Smart controllers
 - More efficient emitters, as expressed by the Residential Irrigation Capacity Index (RICI)

Calculation Spreadsheet

Indoor Calculation Fields

	А	В	C D	E	F	G	Н	1	J	K
1	1 Example Water Use Calculations									
2	Liser input fields	Water Lice	Water Lies Cold Witz Het Witz Total Witz		Home characteristics		Drain Water Heat Perovery			
ر ۸	User input helds	Castle Paula CO	Water Ose		17.1	24.1		2400		covery:
4	Location (pull down)	Castle Rock, CO	Snower_gpd	7.0	17.1	24.1	CFA	2400	Snowers connected	all
5	Distribution system	std	KitchF_gpd	4.1	10.1	14.2	Nbr	3	Equal flow?	yes
6	HW pipe Insulation	none	LavF_gpd	1.8	4.5	6.4	Nfl	2	CSA 55.1 DWHR _{eff}	54.0%
7	Shower (gpm)	2.5	Waste_gpd	4.5	11.2	15.7	Bsmt	0	Tmains =	55.9
8	Kitch Faucet (gpm)	2.2	CW_gpd	20.6	3.9	24.5	Appliances:		WHinTadj =	0.00
9	Lav Faucet efficiency	std	DW_gpd		4.3	4.3	Dishwashe	std	WHinT =	55.9
10	Std sys pipe length	89	Toilets_gpd	21.9		21.9	Clothes washe	std		
11	Recirc sys loop length	159	Soft_gpd	0.0		0.0	W	9.5		
12	Recirc sys branch length	10	Other_gpd	15.7	2.1	17.8	Toilets:			
13	Recirc pumpWatts	50	EP_gpd	0.0	0.0	0.0	gp	1.6		
14	DW heat recovery?	no	Indoor_gpd	75.7	53.2	128.9	Water Softener			
15			Outdoor_gpd	67.8	0.0	67.8	Softene	no		
16	Lot Area (ft2)	5,000	Total_gpd	143.5	53.2	196.6	gal/removed	5.0	allons/1,000 grains re	moved
17	Landscaped Area (ft2)	2,348	Ref_In =	75.7	53.2	128.9	Outdoors:			
18	% Outdoor H2O =	34%	Ref_Out =	67.8	0.0	67.8	Inground Pool?	no		
19	Ref_Irr_Area =	2,348	Ref_Tot =	143.5	53.2	196.6	Irrigation?	no		
20	Tot_Ref_Irr_ratio =	47.0%	Save_Tot =	0.0	0.0	0.0	Smart controller?	no		
21	Net_Lscape_ratio =	61.8%	H2O_in =	100	100	100	Use RICI?	no		
22	Lot size (acres) =	0.115	H2O_Out =	100	100	100	Zone flow rates	25.2	Sum of irrigation zone	flow rates
23			H2O_Tot =	100	100	100	Prof Audit?	no		
24			HERS _{H20} =	100	H2Osave* =	0	Static Pressure	90		
25	Ref std sys pipe length =	89.3	* Gallons per ye	ar	\$save** =	\$0	H2O Price	\$3.90	\$/CCF (1 CCF = 748.05	gallons)
26	Ref recirc sys loop length =	158.6	** \$ per year							

Outdoor Water Use

Outdoor Water Use Accounts For:

- Lot size
- Irrigated Area of rated home
- Location of the home (climate)
- Whether or not there is an automatic irrigation system
- Features of the irrigation system (weather-based controller, flow rates)
- Presence or absence of a swimming pool or spa

What is RICI?

Residential Irrigation Capacity Index

- Developed by the Southern Nevada Water District
- An index within an index
- Estimate irrigation use without knowledge of plantings
- Baseline RICI is set to 5 based on data
- Each 1-point reduction from baseline = 10% reduction in outdoor water use
- Optional method to further reduce outdoor water use

$$RICI_rat = \frac{sum \ of \ flow \ (gpm)of \ all \ irrigation \ valves}{square \ feet \ irrigated \ area} * 1,000$$

Testing for RICI

Determine the irrigated area.

- Start with lot area
- Subtract the footprint of the home and any hardscaping
- Subtract any other areas that will not receive irrigation (artificial turf)

Determine Irrigation Flow Rates

- Turn off all fixtures and appliances
- Set irrigation controller to run each zone for a few minutes (equalize system)
- Measure flow rates by noting start reading of the meter
- Watch for 30 seconds and multiply water used by 2
- Sum together flow rates in gpm.
- Enter this number into the HERS_{H2O} calculation spreadsheet

Calculation Spreadsheet

Outdoor Calculation Fields

	А	В	C D	E	F	G	Н	I.	J	K
1	1 Example Water Use Calculations									
2	liser input fields are vellow		Water Use	Cold Wtr	Hot Wtr	Total Wtr	Home characteristics:		Drain Water Heat Recovery:	
4	Location (null down)	Castle Bock, CO	Shower and	7.0	17.1	24.1	CFA			all
5	Distribution system	std	KitchE gpd	4.1	10.1	14.2	Nbr	3	Equal flow?	ves
6	HW pipe Insulation	none	LavF gpd	1.8	4.5	6.4	Nfl	2	CSA 55.1 DWHR _{eff}	54.0%
7	Shower (gpm)	2.5	Waste gpd	4.5	11.2	15.7	Bsmt	0	Tmains =	55.9
8	Kitch Faucet (gpm)	2.2	CW gpd	20.6	3.9	24.5	Appliances:		WHinTadj =	0.00
9	Lav Faucet efficiency	std	DW_gpd		4.3	4.3	Dishwasher	std	WHinT =	55.9
10	Std sys pipe length	89	Toilets_gpd	21.9		21.9	Clothes washer	std		
11	Recirc sys loop length	159	Soft_gpd	0.0		0.0	WF	9.5		
12	Recirc sys branch length	10	Other_gpd	15.7	2.1	17.8	Toilets:			
13	Recirc pumpWatts	50	EP_gpd	0.0	0.0	0.0	gpf	1.6		
14	DW heat recovery?	no	Indoor_gpd	75.7	53.2	128.9	Water Softener:			
15			Outdoor_gpd	67.8	0.0	67.8	Softener	no		
16	Lot Area (ft2)	5,000	Total_gpd	143.5	53.2	196.6	gal/removed	5.0	gallons/1,000 grains re	emoved
17	Landscaped Area (ft2)	2,348	Ref_In =	75.7	53.2	128.9	Outdoors:			
18	% Outdoor H2O =	34%	Ref_Out =	67.8	0.0	67.8	Inground Pool?	no		
19	Ref_Irr_Area =	2,348	Ref_Tot =	143.5	53.2	196.6	Irrigation?	20		
20	Tot_Ref_Irr_ratio =	47.0%	Save_Tot =	0.0	0.0	0.0	Smart controller?	no		
21	Net_Lscape_ratio =	61.8%	H2O_in =	100	100	100	Use RICI?	no		
22	Lot size (acres) =	0.115	H2O_Out =	100	100	100	Zone flow rates	25.2	Sum of irrigation zone	flow rates
23			H2O_Tot =	100	100	100	Prof Audit?	no		
24			HERS _{H20} =	100	H2Osave* =	0	Static Pressure	90		
25	Ref std sys pipe length =	89.3	* Gallons per ye	ar	\$save** =	\$0	H2O Price	\$3.90	\$/CCF (1 CCF = 748.05	gallons)
26	Ref recirc sys loop length =	158.6	** \$ per year							

- Estimating Irrigation Impact. Only need: Lot area, landscaped area and "yes" for irrigation
- Smart controller and Professional Audit are optional
- Only enter zone flow rates when "yes" is selected for RICI (documentation provided)

Example of Climate Differences

Lot: 5,000 ft²

House: 2,400 ft², 3 bedroom, 2 floors

Landscape: 2,348 ft² with automatic irrigation

	Duluth, MN	Phoenix, AZ
Annual water use	~60,000 gallons	~140,000 gallons
Indoor water use	~80%	~33%
Water savings from installing WaterSense labeled plumbing products	~10%	~4%
Approaches to achieve 30 percent reduction	Both indoor and outdoor improvements	MUST make substantial outdoor improvements

WaterSense

WaterSense 2.0 Mandatory Requirements:

- Max. water pressure: 85 psi
- Hot water piping: Same as Reference Home
- Toilets: 1.28 gpf
- Kitchen Faucet: 2.2 gpm
- Showerhead: 2.0 gpm
- Lav Faucets: Low Flow
- Dishwasher: Same as Reference Home
- Clothes Washer: Same as Reference Home
- Water Softeners: Not installed
- Irrigation: Same as Reference Home

Rating WaterSense Requirements in HERS_{H2O}

Indoor Water Use Target Score=70

Location	WaterSense Requirements	Energy Star Clothes Washer and Dishwasher	1.5 gpm Shower and Kitchen	Toilet @ 0.8 gpf	Eff. Hot Water Distribution	Best Available Clothes Washer & Dishwasher
Park City, UT	93	88	81	77	73	69
Phoenix, AZ	96	92	92	86	83	81
Tampa, FL	93	87	79	76	71	67
Denver, CO	94	89	83	80	76	73
Riverside, CA	95	90	84	84	78	75

Outdoor Water Use in HERS_{H2O}

Location	Irrigation = "YES"	Prof. Audit & Weather-based controller	20% Reduction in Irrigated Area	Use RICI (6 gpm all zone flow rates)
Park City, UT	77	68	62	56
Phoenix, AZ	86	73	63	55
Tampa, FL	75	67	61	56
Denver, CO	80	70	62	56
Riverside, CA	82	71	63	56

Impact of RICI and Irrigation on HERS H2O

- Total Lot Size: 5,000 sq. ft.
- Reference Irrigated Area: 2,348 sq. ft.
- Indoor set to WaterSense 2.0 Requirements.

Location	WaterSense 2.0 Requirements	Ref. Irr Area & 25% Flow Reduction (8.8 gpm all zones)	Ref. Irr Area & 50% Flow Reduction (5.9 gpm all zones)	Reduce Irrigated Area by 20% and Add Weather- based Controller	
Park City, UT	93	89	84	75	
Phoenix, AZ	96	89	80	68	
Tampa, FL	93	90	85	77	
Denver, CO	94	89	83	73	
Riverside, CA	95	89	82	71	

Inspection Process

Two Inspection Resources

- Inspection Checklist
- Inspection Guidance Document

Item	Section	Home Criteria	Yes	No	NI	Doc
Indoor Water Effi	ciency Cr	iteria	_			
		Pressure-loss test on all water supplies detected no leaks				
		No visible leaks from hot water delivery system				
		No visible leaks from tank type toilets from dye test				
Leaks	1	No visible leaks from bathroom faucets				
		No visible leaks from kitchen faucets				
		No visible leaks from showerheads				
		No visible leaks from other fixtures or appliances				
		Check meter with all systems off for system leak				
		Pressure tank installed and set ≤ 60 psi OR				
Service Pressure	2	Pressure Regulating Valve installed upstream of fixtures and pressure test ≤ 60 psi OR				
		Written documentation from water supplier that pressure ≤ 60 psi OR				
		On-site static pressure test: psi				
Hot Water	3	Is there a hot water recirculation system present? If so, what type:				
Toilet	4.1	Flush volume Marker*				Req.
	4.1.1	Single Flush Elush Rate** gpf				Req.
	4.1.2	Dual Flush Flush Rate** gpt				Req.
		Non-water consuming toilet				
Bathroom sink faucet	4.2	Flow Rate Marker* gpm				Req.
Kitchen sink faucet	4.3	Flow Rate Marker* gpm				Req.
		Flow Rate Marker* gpm				Req.
Showerhead	4.4					
Dishwasher	4.5	Check for documentation of Water Factor				Reg.
Clothes washer	4.6	Check for documentation of Water Factor				Req.
Water softener	4.7	Certified to NSF/ANSI Standard 44, including if available voluntary efficiency rated claim (stamped on data plate or indicated in the product manual)				Req.
	4.7.1	Verify water hardness of area or conduct test				Req.

Inspection Tools

- Stop watch/ cell phone timer
- Digital thermometer such as a digital food thermometer
- Pressure gauge
- Bucket or flow bag with volume measures marked
- Dye tablets for toilets
- Tape measure
- Water Hardness Tester

Typical Inspection Process- Indoor

It's anticipated this will be done during a typical HERS rating final inspection

Inspection Process:

- 1. Put dye tablets in toilets
- 2. Verify flow rates of fixtures
- 3. Record make/model of dishwasher (if installed)
- 4. Record make/model of clothes washer (if installed)
- 5. Record make/model of water softener system (if installed)
- 6. Go back and check toilets for leaks (flush toilets to clear dye)
- 7. Verify flush rates stamped on toilets
- 8. Check house water pressure (or obtain documentation from builder)

Potential Impact

Popularity of HERS

Percentage of New Homes HERS Rated

23% of all new homes in 2017 were HERS Rated!

Can Scale Quickly

Over 1,900 Active RESNET Certified HERS Raters

Rating Field Inspectors By State

Interested Parties

Know someone interested in staying up to date on the water efficiency work of RESNET?

- Have them email <u>ryan@resnet.us</u>.
- Will receive periodic updates
- Notices of public comment periods and webinars
- Monthly "Water Update Newsletter".

Thank you!

Dave Walls International Code Council dwalls@iccsafe.org

Ryan Meres, Program Director RESNET <u>ryan@resnet.us</u> 760-681-2391

"We shall all know the value of water when the well runs dry."