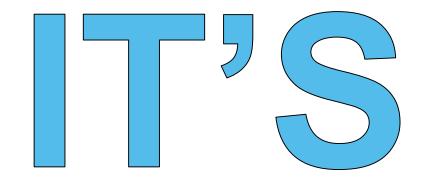
Performance Path Survival Guide

Kimberly Cheslak Energy Codes Specialist

DOE National Energy Codes Conference Austin, TX

July 16, 2018

IMT's Mission and Codes Work


Thought Leadership

- Intersection of codes, efficiency and resilience
- Develop practices that can be used to assess savings from code compliance

Implementation

- Helping cities save energy through better enforcement
- Making buildings more efficient across their life cycle

Faster than you think...

CHAPTER 1: Why Performance Path?

WE ARE

City Commitments

Model Code Trajectory

Design Goals

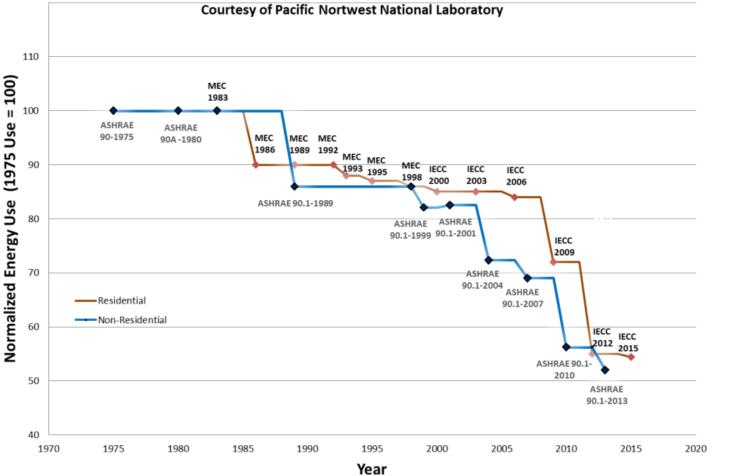
City Commitments: Climate Change

C40 Cities

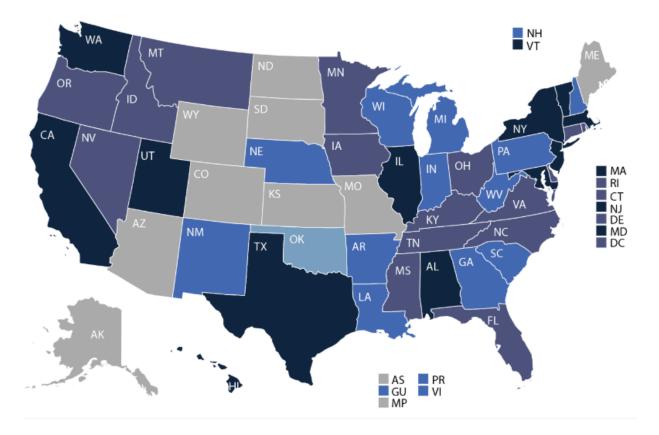
MAKE A DIFFERENCE

Each city in the C40 is unique in its infrastructure and progress in addressing climate change. C40 works to empower cities to connect with each other and share technical expertise on best practices.

City Commitments: Sustainability



City Commitments: Resilience


Model Codes: to Date

Improvement in Residential and Non-Residential Model Energy Codes (Year 1975-2015)

Model Codes: to Date

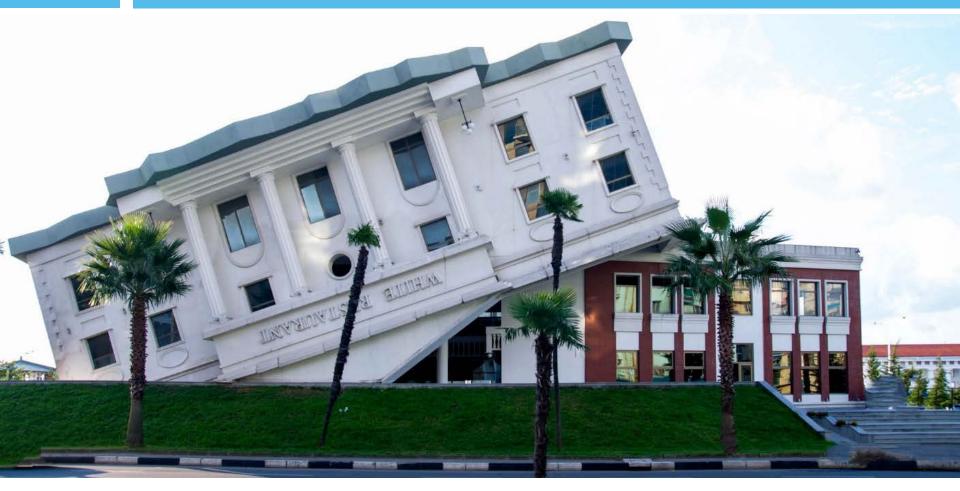
Meets or exceeds ASHRAE 90.1-2013 or equivalent (12)
Meets or exceeds ASHRAE 90.1-2010 or equivalent (17)
Meets or exceeds ASHRAE 90.1-2007 or equivalent (15)

Meets or exceeds ASHRAE 90.1-2004 or equivalent (1)

No statewide code or predates ASHRAE 90.1-2004 (11)

Model Codes: Trajectory

Figure ES1. History of U.S. building codes, 1980–2012. *Source:* Data from U.S. DOE Building Codes Program.


Design: and Prescriptive Path

https://www.rexdixon.com/topic/cross-section-detail-of-wooden-frame-house

Design Goals: Flexibility

Design: High Performance Buildings

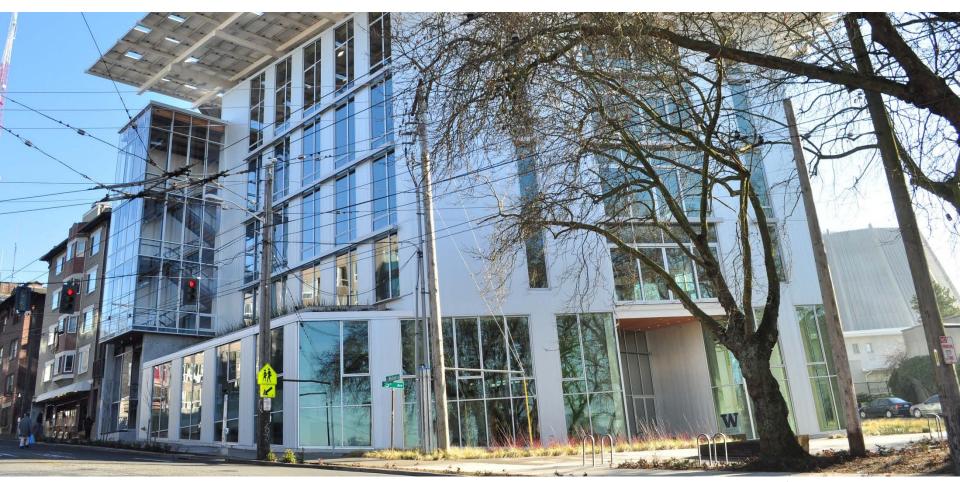
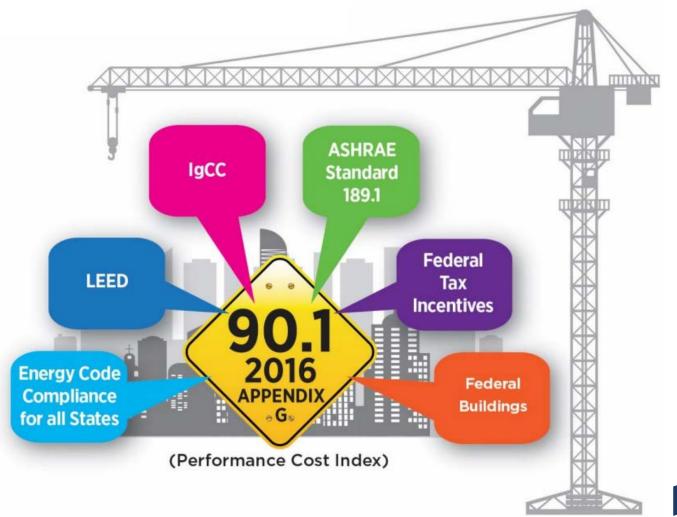


Image courtesy of Joe Mabel, Wikimedia Commons

... And ASHRAE 90.1-2016



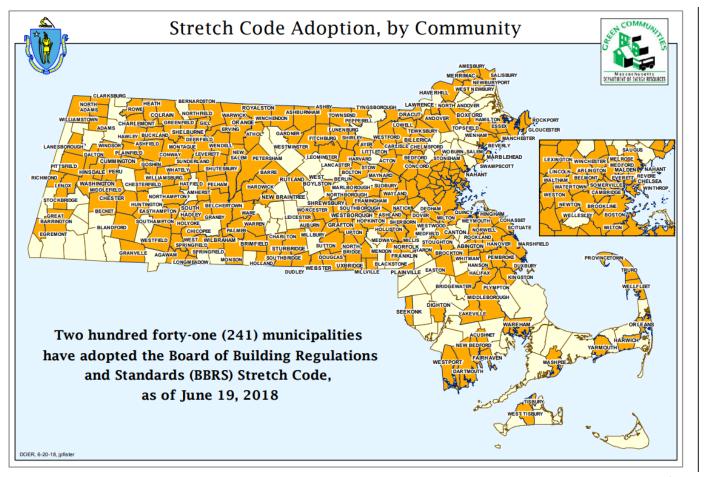
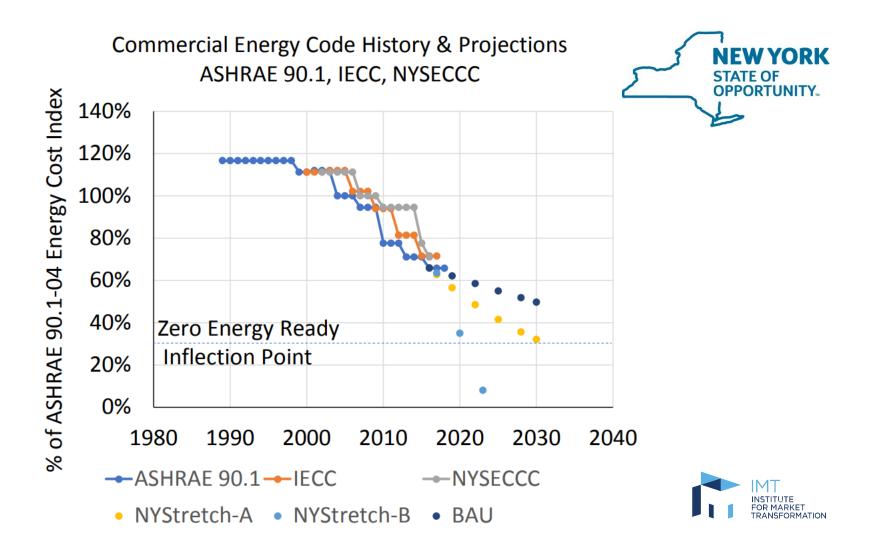


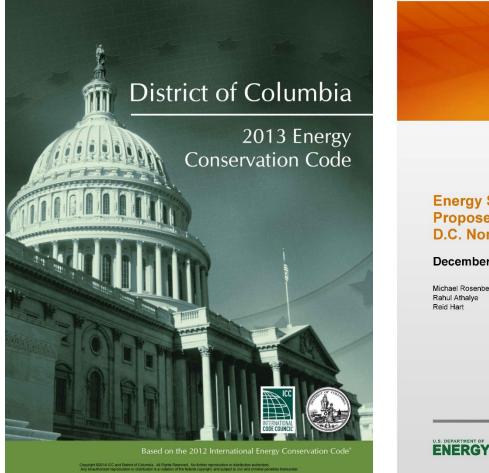
Image courtesy of PNNL

CHAPTER 2: Who is Acting?

Massachusetts


California

ENERGY COMMISSION



District of Columbia

Energy Savings Analysis of the Proposed Revision of the Washington, D.C. Non-Residential Energy Code

December 2017

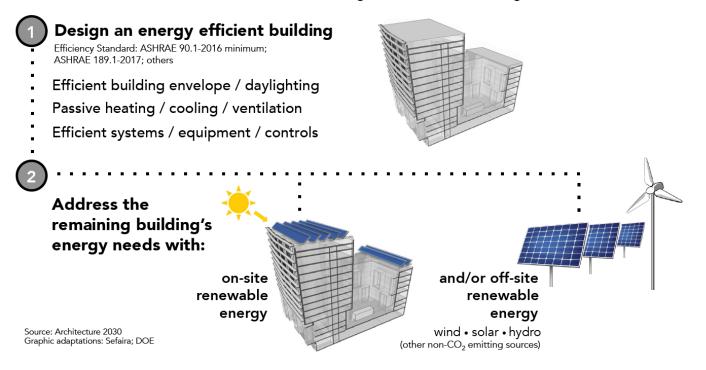
Michael Rosenberg Rahul Athalve Reid Hart

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

New Buildings Institute

Want Greener Buildings? Stretch Codes Get You There Faster.

Adopting stretch codes can drastically improve building energy efficiency beyond existing codes, and put buildings on the path to zero energy by 2050.



© Copyright 2017 New Buildings Institute

Architecture 2030

ZER⊙ CODE[™]

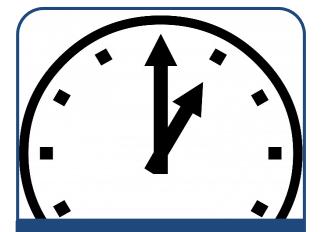
Commercial • Institutional • Mid-Rise/High-Rise Residential Buildings

CHAPTER 3: Key Groups

Major Stakeholders

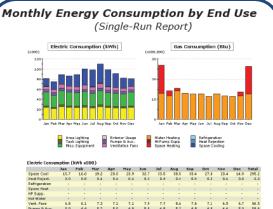
Energy Plus

eQUEST



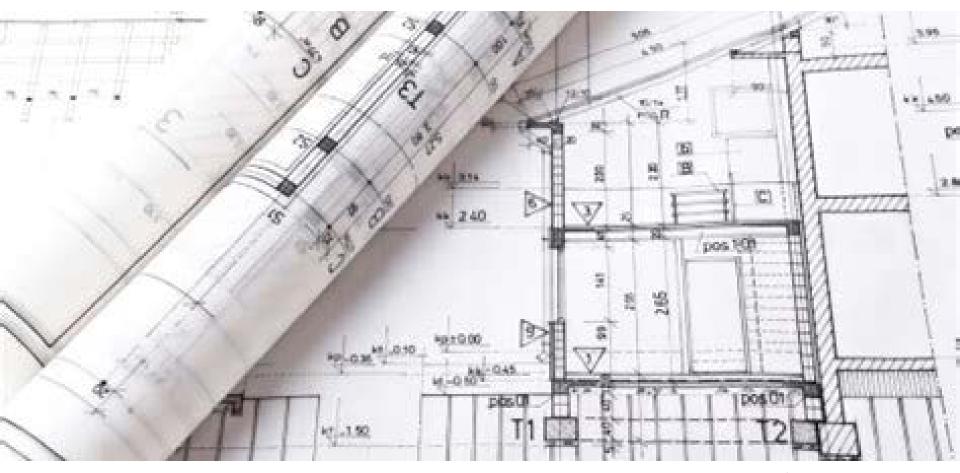
- + Modeling Firms
- + Designers
- + Owners/ Developers
- + Building Officials

CHAPTER 4: Surviving a New World


Challenges for Building Officials

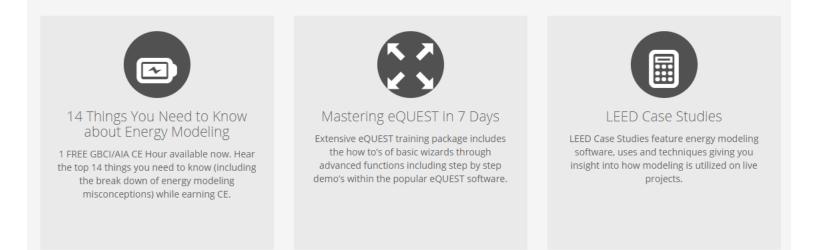
Time and Resources

НОМЕ	NEWS EVENTS ABOUT
IOE » EERE » BTO :	BECP »
Development Adoption	Resource Center
COMPLIANCE	The U.S. Department of Energy (DOE), through the Building Energy Codes Program (BECP) Resource Center, provides a comprehensive collection of information.
RESOURCE CENTER	resources, and technical assistance designed to answer questions and address issues
FAQs	related to energy codes. This includes frequently asked questions, publications, model adoption policies, compliance software and tools, and training modules based on best
TRAINING	practices. BECP's team of building energy codes experts is also available to answer
PUBLICATIONS	specific questions submitted through the web-based help desk.
RESOURCE GUIDE	Compliance Software and Tools
GLOSSARY	<u>COMcheck™ Desktop</u> <u>@ or COMcheck -WEB</u>
RELATED LINKS	 <u>REScheck™ Desktop</u> ^B or <u>REScheck-WEB</u> Residential Prescriptive Requirements


Technical Support

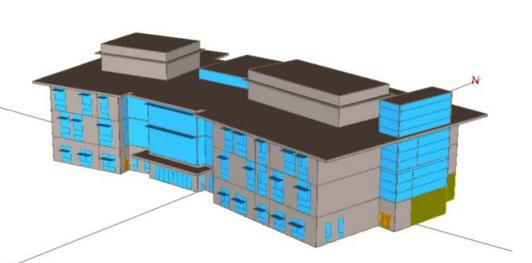
Documentation

Time and Resources

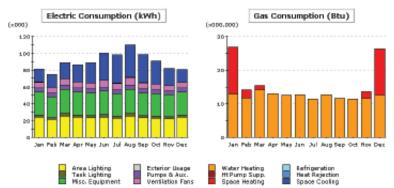


Technical Support

Energy Modeling Training from Industry Experts


Get Energized & Get Noticed with GBRI's Training Today

Learn only from top experts! GBRI is proud to announce its partnership with Energy-Models.com to bring you high-quality training on Energy Modeling. Be ranked among the elite, as part of the next big thing for Architects, Engineers, Sustainability Consultants and other building professionals. Get noticed by building the desired energy modeling skill set needed to land that dream job or promotion, or master it as you lead your LEED project. From general energy modeling intros to in-depth LEED models, we'll take care of you! Register now and soon you, too, will be hot in demand!



Documentation

Monthly Energy Consumption by End Use (Single-Run Report)

Electric Consumption (kWh x000)

	Jan	Feb	Mar	Apr	Ney	Jun	Jul	Aug	Sep	Oct	Nev	Dec	Total
Space Cool	15.7	16.0	19.2	20.0	23.9	32.7	13.5	38.5	33.4	27.8	20.4	14.9	295.2
Heat Reject.	8.0	0.0	0.1	0.1	0.1	0.5	0.4	0.4	0.4	0.2	0.1	0.0	2.2
Refrigeration	-	-	-	-	-	-	-	-	-		-	-	-
Spece Heat	-	-	-	-	-	-	-	-	-		-	-	
HP Supp.	-	-	-	-	-	-	-	-	-		-	-	-
Hot Water	-	-	-	-	-	-	-	-	-		-	-	
Vent. Pare	5.D	6.1	7.3	7.1	7.1	7.8	7.7	5.6	7.6	7.1	6.5	6.7	86.5
Pumpe & Aux.	5.D	4.4	5.2	5.0	4.5	5.8	4.8	5.2	4.8	4.5	4.6	5.0	58.6
Exit. Usage	-	-	-	-	-	-	-	-	-		-	-	-
Mics. Equip.	27.2	24.3	28.9	27.3	26.6	27.3	36.1	28.9	26.6	26.1	25.5	27.3	322.6
Taak Lights	2.6	2.3	2.8	2.6	2.6	2.7	2.5	2.8	2.6	2.5	2.5	2.5	31.0
Area Lights	23.9	21.3	25.2	23/9	23.2	24.2	22.9	25.2	23.2	22.5	22/3	23.9	252.1
Total	81.3	74.6	68.7	85.9	88.3	100.6	57.9	109.6	98.6	90.6	81.7	80.4	1,078.1

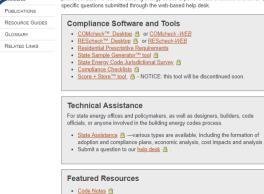
Gas Consumption (Btu x000,000)

Jan	reb	Mar	Apr	May	JUN	Jul	Aug	500	000	Nev	Dec	Tetal
-	-	-	-	-	-	-	-	-		-	-	-
-	-	-	-	-	-	-	-	-		-	-	-
-	-	-	-	-	-	-	-	-		-	-	-
14.02	2,43	1.36	-	-		-	-	-		1.99	13.75	33.55
-	-		-	-	-	-	-	-		-	-	-
12.79	11.64	13.97	12.00	12,40	12,62	11,40	12.66	11.60	11,35	11,49	12,51	147,31
-	-	-	-	-	-	-	-	-		-	-	-
	-		-	-		-		-		-	-	
			-	-		-		-		-	-	
-	-		-	-	-	-	-	-		-	-	-
-	-	-	-	-	-	-	-	-		-	-	-
	-		-	-		-		-		-	-	-
26.81	14.07	15.33	12.55	12.4D	12.62	11.40	12.66	11.60	11.35	11.47	26.25	150.87
	- 14.02 - 12.79 - - - -	14.02 2.43 12.79 11.64 	14.02 2.43 1.36 32.79 31.64 13.97 	14.02 2.43 1.36 12.79 11.64 13.97 12.00 	14.02 2.43 1.36	14.02 2.43 1.36	14.02 2.43 1.36	14.02 2.43 1.36	14.02 2.43 1.36	14.02 2.43 1.36	14.02 2.43 1.36	14.02 2.43 1.36 1.09 13.75 12.79 11.64 13.97 12.68 12.40 12.62 13.40 12.66 11.60 13.38 11.49 12.51

Images courtesy of eQuest

What the Building Official Sees

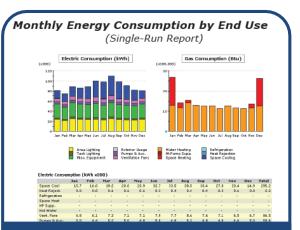
V(X°+X12+X) thibial Fburier Mutai 7 + 1/ + 42 = 0 -this 5 ask. Ramadoss k [xo, x,,x 20+ rean +x, +x,). CIP Xo ngeo dinates 2 $Coh(V) \simeq Coh(IP')$ K[X0, X1, X2] F Hom (O, OVI $(\chi_{1}^{2} + \chi_{1}^{2} + \chi_{1}^{2})$ ne Math Grad House KimManleyOrt Flickr


(Xx + X) nibial Fourier Mufai) -+ X1 - YL -0 his. reviewan KTXo, XI.X $\mathbf{0}$ 2 rean model?" nge of 1212 x, e ,00 0,00 dinates $Coh(v) \simeq Coh(P')$ K[X0, X1, X2] F Hom (O, OVI $(\chi_{1}^{2} + \chi_{1}^{2} + \chi_{1}^{2})$

the Math Grad House KimManleyOrt Flickr

"How can we support energy model review?"

CHAPTER 5: Resources Review


Technical Articles

Technical Support Documents

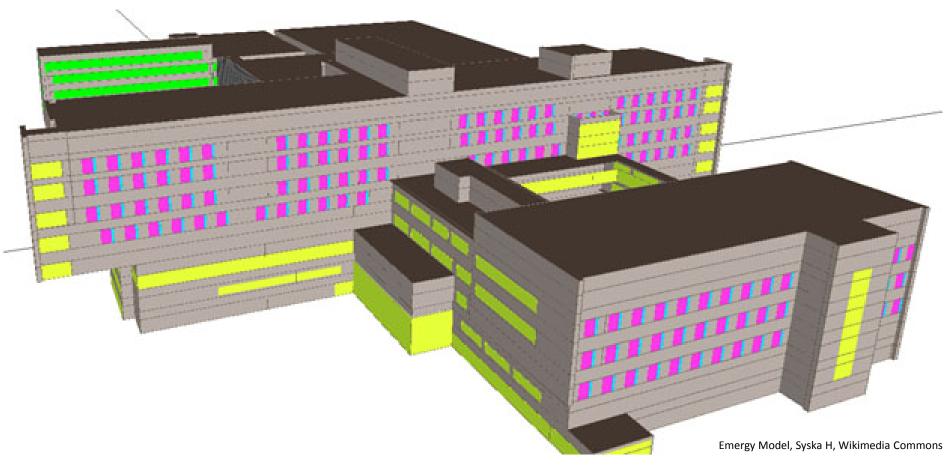
Training & Support

	COOLI	NG (COIL PEAK		(CLG SPAC	E PEAK		HEATING	COIL PEAK	
Pe	aked at Time	r	Mo/H	1: 7/23		Mo/Hr	7/23		Mo/Hr:	Heating Desig	
	Outside Air	r	OADB/WBIHP	R: 83/65/	69	OADB	83		OADB:	0	3
		pace	Plenum		Percent		Percent		Space Peak	Coil Peal	
			Sens. + Lat		OfTotal	Sensible			Space Sens	Tot Sen	
		Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/f	h
Envelope Los								Envelope Loads			
Skylite Solar		0	0	0	0	0	0	Skylite Solar	0		0
Skylite Cond	1	0	0	0	0	0	0	Skylite Cond	0		0
RoofCond		0	0	0	0	0	0	RoofCond	0		0
Glass Solar		0	0	0	0	0	0	Glass Solar	0	0	
Glass/Door (Cond	0	0	0	0	0	0	Glass/Door Cond	0		0
Wall Cond		1.540	0	3,540	36	3,540	36	Wall Cond	-8.302	-8,302	2 8
Partition/Doc	or	0		0	0	0	0	Partition/Door	0		0
Floor		Ô.		ō	Ô.	0	õ	Floor	-1.407	-1.40	7 1
AdjacentFlo	or	Ô.	0	Ő.	0	Ö	Ö	Adjacent Floor	0		0
Infiltration		õ		Ő.	0	0	õ	Infiltration	0		0
Sub Total	> 3	,540	0	3,540	36	3,540	36	Sub Total ==>	-9,709	-9,709	9 10
Internal Load								Internal Loads			
Lights		928	232	1,160	12	928	10	Lights	0		0
People		040	232	1,100	0	920	0	People	0		ŏ
Misc		ŏ	0	0	0	0	0	Misc	0		0
Sub Total ==	0	928	232	1,160	12	928	10	Sub Total ==>	0		0
Ceiling Load		0	0	0	0	0		Ceiling Load	0		0
Ventilation L		0	0	0	0	0	0	Ventilation Load	0		0
Adi Air Trans			0						0		0
		0		0	0	0	0	Adj Air Trans Heat	0		3
Dehumid. Ov				0	0			Ov/Undr Sizing	0		0
Ov/Undr Sizin		241		5,241	53	5,241	54	Exhaust Heat		(0
Exhaust Heat			0	0	0			OA Preheat Diff.			õ
Sup. Fan Hea				0	0			RA Preheat Diff.			0
Ret Fan Heat			0	0	0			Additional Reheat			0
Duct Heat Pk			0	0	0			System Plenum He			ō
Underflr Sup				0	0			Underflr Sup Ht Pk		0	0
Supply Air Le	eakage		0	0	0			Supply Air Leakage		(3
Grand Total -	> 9	,709	232	9,941	100.00	9,709	100.00	Grand Total ==>	-9,709	-9,705	9 10
		-	COOLING	OIL SEL	ECTION	u			AREA		
	Total Capa	MBh	Sens Cap. Co		Enter	B/WB/HR		B/WB/HR	Gross Total	Glass ft2 (%)	1
Main Cla	0.8	0.0	9.9		75.5.62	3	55 0 F	- 2000 F	310	15 (56)	ıL

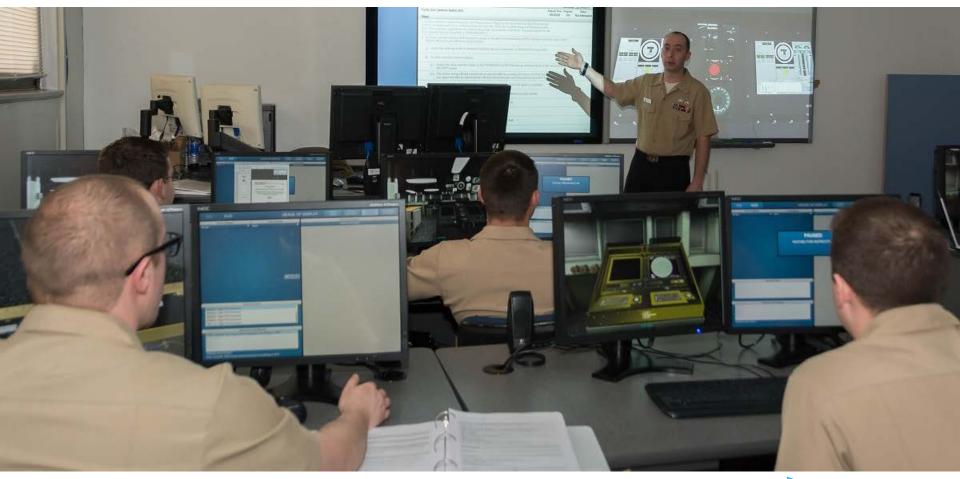
Documentation

Automatic Baseline

What's Not Working Training: Trial by Fire



What's Not Working Training: Infrastructure



What's Not Working Training: To be Energy Modelers

Standard Training Modules

What's Not Working Documentation: Lack of Standard

aged Hanne VIIF Drive

Parent Street, Television

EPORT-	- SS-D Build	ing	HVAC	Load S	ummary									
			co	OLI	NG				- H E	ATI	NG		E I	EC
10NTH	COOLING ENERGY (MBTU)	OF	TME MAX HR	DRY- BULB TEMP	WET- BULB TEMP	MAXIMUM COOLING LOAD (KBTU/HR)	HEATING ENERGY (MBTU)		TIME MAX HR	DRY- BULB TEMP	WET- BULB TEMP	MAXIMUM HEATING LOAD (KBTU/HR)	ELEC- TRICAL ENERGY (KWH)	MAXINU ELE LOA (KW
JAN	0.00129	29	17	43.F	37.F	0.560	-25.925	23	В	4.F	2.F	-175.009	3762.	11.65
PEB	0.00000	28	24	29.F	25.F	0.000	-18.876	5	8	19.F	17.F	-168.875	3405.	11.65
AR	0.11304	28	15	69.F	53.F	26.591	-14.971	12	В	34.F	33.F	-131.950	3795.	12.84
PR	0.32660	30	15	74.F	55.F	35.054	-6.839	3	в	35.F	28.F	-87.415	3585.	13.30
AY	5.30432	11	15	84.F	65.F	73.934	-1.009	7	в	42.F	34.F	-47.670	3918.	16.77
UN	16.26566	18	11	76.F	70.F	106.160	-0.007	1	8	55.F	49.F	-3.004	4561.	19.05
UL	24.82984	23	11	84.F	72.F	119.349	0.000	31	1	71.F	67.F	0.000	5257.	20.36
UG	23,71019	27	15	83.F	75.F	121.300	0.000	31	1	70.F	65.F	0.000	5228.	19.69
EP	14.76745	4	10	78.F	69.F	118.795	-0.090	26	8	60.F	56.F	-4.802	4328.	19.60
CT	2.56139	9	15	76.F	61.F	63.537	-2.113	31	в	40.F	33.F	-55.397	3746.	15.36
IOV	0.12968	5	11	46.F	43.F	7.356	-9.118	23	в	39.F	35.F	-106.157	3550.	12.26
EC	0.00738	11	17	45.F	40.F	3.408	-17.617	26	В	28.F	24.F	-157.968	3700.	11.72
OTAL	88.017					121,300	-96.565					-175.009	48835.	1

					ADMIL NOT	Point in July 1			
Nost -	TEMP TEMP	2042 TOMP	85 (7)	20WE ARFLOW KEM	ACM SC # SPOLE LOAD	2040 COMP (RTMAS)	COOLING COR DURAN	TERMINAL HEALING COR.	UCATIN UCATIN UNI UNI
0000	84.6		- 48-	-696-1	25084 %	15596.7	18002.6	9.80	
S100 -	81.6	001	41	708.0	202443	HIHER	110203-87	0.30	0
0200	62.3	- 10.3	- 45	270.41	21248.15	110003-01	18023.82	0.5.	0
0089	81.5	815	- 41	262	26425.2	12103-0	Timpid 1	0.85	0
(and)	16.5	10.5	1.45	226.0	80743	17143-5	Panal 21	0.00	
SALM.	76.8	- 84.1	41.	726.2	- 2479420	HPOM ST	Phill T	0.20	8
508	367.	.76.4	14	2852.1	2636(1)	10001-8	102663	0.5	6
0000	86.1	76.2	14	17032.02	21122.1	Depart N	31211.8	8.8	0
Ching .	811.1	82	57	2011.0	200407-01	Schutz - St	3054115	0.8	6
Contra .	82-51	- 362	0	2007.0	100-12-2	1000.0	100002	- 10	

10.1

10.000

11010

Hourly Zone Loads for VRF

Sec.

11.14

INST.

3622

12.00

1640

NOT 1

100

SIN.

	coo	LING	COIL PEAK			CLG SPAC	EPEAK		F	EATING	COIL PE	AK		TEMPI	ERATUR	ES	
Pe	aked at Ti Outside		OADB/WB/H	fr: 7/23 R: 83/65/6	69	Mo/Hr OADB		-		MolHr: OADB:	Heating D 0	Design		SADB Ra Plenum	Cooling 65.0 75.0	Heating 90.0	ŏ
	Sens	Space	Plenum Sens. + Lat		Percent	Space	Percent			Space Peak Space Sens			Percent	Return Ret/04	75.5	70.0	ō
		Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)			Btu/h		Btu/h		En MtrTD	0.0	0.0	ő I
Envelope Lo	arte	Literin	L/LUMIT	Louis III	1/1	Litterin	1 /10/	Envelope	onde	Louis 1		Dium	(4)	En BIdTD	0.0	0.0	ő
Skylite Solar	aus	0	0	0	0	0	0	Skylite S	iolar.	0		0	0.00	En Frict	0.0	0.0	6
Skylite Cond		ŏ	ŏ	ŏ	0	0	ő	Skylite C		ő		ŏ	0.00	rinnet	0.0	0.0	
RoofCond		ŏ	ŏ	ő	0	ő	ő	RoofCo		0		ő	0.00				-
Glass Solar		0	0	0	0	0	0	Glass Se		0		0		A10	FLOWS		
Glass/Door	and a		0					Glass/Dr						AIR	FLOWS		
	Lond	0		0	0	0	0			0		0	0.00		Cooling	Heatin	na
Wall Cond		3,540	0	3,540	36	3,540	36			-8,302		8,302	85.51	Diffuser	458		58
Partition/Dor	00	0		0	0	0	0	Partition	Door	0		0	0.00				
Floor		0		0	0	0	0	Floor		-1,407	-	1,407	14.49	Terminal	458		68
Adjacent Flo	or	0	0	0	0	0	0	Adjacen	t Floor	0		0	0.00	Main Fan	458		68
Infiltration		0		0	0	0	0	Infiltratio	0	0		0	0.00	Sec Fan	0		0
Sub Total ==		3.540	0	3.540	36	3.540	36	Sub Tota	(==>	-9.709		9.709	100.00	Nom Vent	0		ō
300 1000 ***		3,040	0	3,640	30	3,040	30	000 100		-0,100				AHU Vent	0		0
								Internal Lo	ate								
Internal Load	8								iuu a					Infil	0		0
Lights		928	232	1,160	12	928	10	Lights		0		0	0.00	Min Stop/Rh	0		0
People		0	0	0	0	0	0	People		0		0		Return	458		68
Misc		0	0	0	0	0	0	Misc		0		0	0.00	Exhaust	0		0
Sub Total ==		928	232	1,160	12	928	10	Sub Tote	1	0		0	0.00	Rm Exh	0		0
500 1000 ==	1.3	828	232	1,100	12	828	10	500 100	y	0		U	0.00	Auxiliary	0		õ
Ceiling Load		0	0	0	0	0	0	Ceiling Lo	he	0		0	0.00	Leakage Dwn	0		ŏ
Ventilation L		0	0	0	0	0		Ventilation		0		ő			0		ő
			0				0							Leakage Ups	0		0
Adj Air Trans		0		0	0	0	0	Adj Air Tra		0		0					
Dehumid, Ov	Sizing			0	0			Ov/Undr S	izing	0		0	0.00				-
Ov/Undr Sizi	na	5.241		5.241	53	5.241	54	Exhaust H	eat			0	0.00	ENGINE	ERING	CKS	
Exhaust Hea			0	0	0		-	OA Prehez	t Diff.			0	0.00	Litterite			
Sup, Fan Hei				0	0			RA Prehea	t Diff			0	0.00		Cooling		
Ret, Fan Hea			0	0	0			Additional				0	0.00	% OA	0.0	0.0	ō.
Duct Heat Pk			0	õ	0				enum Heat			ŏ	0.00	cfm/ff	1.48	1.48	ŝ.
Underfir Sup			0	ŏ	ŏ				up Ht Pkup			0	0.00	cfm/ton	552.93		
Supply Air L	псекир		0	0	0							0	0.00	ft*/ton	374.21		
Supply Air Li	сакаде		0	0	0			Supply Air	Leakage			0	0.00				
Grand Total	***	9,709	232	9,941	100.00	9,709	100.00	Grand Tot	a/ >	-9,709	-4	9,709	100.00	Btu/hr-ft ² No. People	32.07	-31.32	2
	_	_	COOLING	COIL SEL	ECTIO	N				AREA	s		HEA	ATING COIL	SELECT	ON	=
	Total Ca	apacity	Sens Cap, C			DB/WB/HR	Leave	B/WB/HR	Gro	as Total	Glass			CapacityCo			Lv
	ton	MBh	MBh	cfm		*F gr/b	°F	*F grib	Gird		ft2 (3	()		MBh	cfm	*F	
									1000				State States				
Main Clg	0.8	9.9	9.9	458			55.0 5		Floor	310			Main Htg	-9.7			0.1
Aux Clg	0.0	0.0	0.0	0	0.0 0	0.0 0.0	0.0	0.0 0.0	Part	0			Aux Htg	0.0	0	0.0	0.1
Opt Vent	0.0	0.0	0.0	0	0.0 0	0.0 0.0	0.0	00 00	Int Door	0			Preheat	0.0	0	0.0	0.1
operatin	0.0	0.0	0.0	0	5.0 0	0.0	3.0	0.0	ExElt	40				0.0	0	0.0	
Total	0.8	9.9							Roof	40	0	0	Humidif	0.0	0	0.0	0.1
	0.0	9.9							Wall	450		6	Opt Vent	0.0	0		0
									Ext Door	0	0	0	Total	-9.7			

0.080040

12272

What's Not Working Documentation: Engineering Stamp

1203		220		Ho	only Zone Lo	2007.40 U.S.A. 170			01000010
194.00	e States.			5.312	35.0.0000.000	0.020.07.2400	88. 		12.2.2.2.
	iam uubied								
		_	_			Pole			
_		-				1.10.7			and the second se
Nos -	TEMP TEMP	2000 TOMP: TOMP	85	20NE ANTLON	SCN SOLL LOAD	2046 COMD EX10540	COLUCT COLUC	TEADAG COL DOBAC	UCATING URATING URAT BENERAL
1000	14.6	- 61.1			20041	10000	140.2.5	9.2	
1000	12.6	- 60	100	702.0	38244	14046.4	1000.6	6.8	0.0
Sec.	12.3	10.1		179.91	37240.15	Logistic de	10021.00	2.2	
6000	81.2	2012	1.00	202	242.2	10,000	Final A		MEMBER NAME
Sec.	14.51	115	1.00	-000	1927-4-34	12143-5	12408.2	- 00 -	GIONNE EN
12.00	26-6	1.1	1.46	17262	24799.84	17734.5	- Physics -	69	103 0
20.00	201	. N. C.	1.00	2252.1	24396.7	120014	117664	23 83	45SIONAL ENGINE
5.0 Bern	10.1	19.4	14	2553.0	20211	242#12	312112	2.2	O MEMBER NAME
	11.1	- 26	1.11	2003.00		2016.20	2024111	2.2	A MEMDED AN HADED
	1.3	1.24.0	191				5.00 19 2		a WEWBER NUMBER
1996	0.6	- 25.5		2302.5	20.24	14 M 1 M	20014-0		
1182	66.6	1.00		2004.0	20421.01	128-61	38/6(1)	0.5	O VR MIL DAY
12000	2.1	18.4	1.17	2353.8	28673.3	12746.44	200811	0.2	OF VR MN DAY N
1288	2.2	26.2	- 55	29.0.0	1040.3	15,040,3	1260.2	2.1	TATCHEN
1400	21.2	C. 20.4			1,578.14	2311	506255	000000000000000000000000000000000000000	
1500	- 90 E	- 26.2		298.8	34384.0		34334.75		
100	16.2	1.00	1.12	23/22/2	34967.5	103-064	14716-20	0.07	Prof. Eng. S
11.00	199.8	1.26.2	- 63	2503.8	31520.4	DIVOLT-	26.28.3	0.0	Prof. Eng. S
1200	9.5	1.00	- 53	25.5.5	202014	200.00	25.03 4	2.50	Wikimedia
1.00	4.8	20.4	the second second second	200277	100001	57564 A	34826.35		0.0
1998	45.1	- 26.4	2.54.5	342.0	34000.31	366153	37 M 18 A		200
2.87	46.5	10.0	5 M (2903.6	120111	120035	30673-5	88	0.2
22.00 C	- 44.2	- 10 A	- 44	425.0	202.0.1	153.67	I SECT.	0.0	6.9
200 C	10.21	10.1	1	2400 F	30567.0	MC31.4	1.000		5.00

Prof. Eng. Stamp, XA7761B, Wikimedia Commons

Standard Submission Format

Owner/Agent:

2009 IECC

Section 1: Project Information

Project Type: New Construction Project Title : Marvins Gardens

Construction Site: 123 Main Bozeman, MT 59715 Designer/Contractor.

Section 2: General Information

Building Location (for weather data): Climate Zone: Building Type for Envelope Requirements: Vertical Glazing / Wall Area Pct.: Skylight Glazing / Roof Area Pct.:	Bozeman, Montana 6b Non-Residential 8% 2%
Activity Type(s)	Floor Area
Office	1000
Retail	5000
Workshop	2700

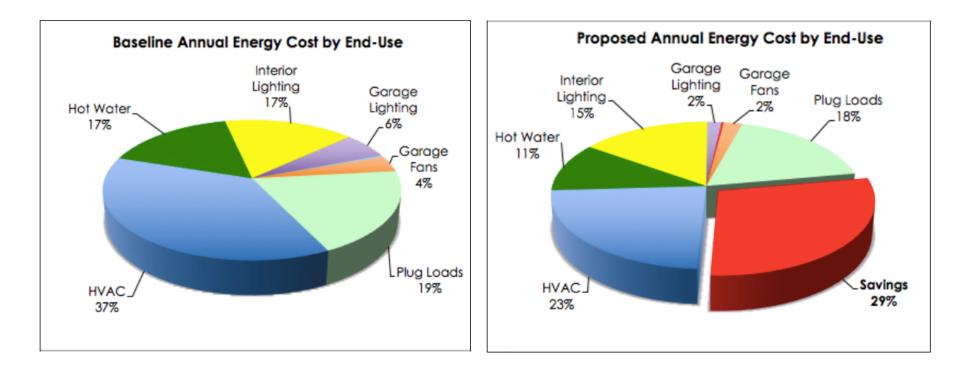
Section 3: Requirements Checklist

Envelope PASSES: Design 5% better than code

Climate-Specific Requirements:

Component Name/Description	Gross Area or Perimeter	Cavity R-Value	Cont. R-Value	Proposed U-Factor	Budget U-Factor
Roof 1: Non-Wood Joist/Rafter/Truss	6112	40.0	0.0	0.033	0.02
Skylight 1: Metal Frame, Double Pane, Tinted, SHGC 0.80	112			0.500	0.600
Exterior Wall 1: Solid Concrete:8" Thickness,Medium Density , Furring: Metal	6000	11.0	10.0	0.063	0.080
Door 1: Glass (> 50% glazing):Metal Frame, Entrance Door, SHGC 0.30	42			0.500	0.800
Window 1: Metal Frame, Double Pane with Low-E, Tinted, SHGC 0.63	1500			0.600	0.550
Window 2: Metal Frame, Double Pane, Clear, SHGC 0.72	56			0.700	0.55
Door 2: Insulated Metal, Non-Swinging	288			0.140	0.50
Door 3: Insulated Metal, Swinging	40			0.200	0.70
Exterior Wall 2: Solid Concrete:8" Thickness,Medium Density , Furring: Metal	6000	11.0	10.0	0.063	0.08
Exterior Wall 3: Solid Concrete:8" Thickness, Medium Density , Furring: Metal	6000	11.0	10.0	0.063	0.080
Exterior Wall 4: Steel-Framed, 24" o.c.	1000	19.0	0.0	0.094	0.064
Floor 1: Slab-On-Grade Unheated, Vertical 2 ft.	180		10.0		

(a) Budget U-factors are used for software baseline calculations ONLY, and are not code requirements.


Air Leakage, Component Certification, and Vapor Retarder Requirements:

1. All joints and penetrations are cauliked, gasketed or covered with a moisture vapor-permeable wrapping material installed in accordance with the manufacturer's installation instructions.

Report date: 09/01/12 Page 1 of 2

Automatic Baseline Generation

Thank You

Kimberly Cheslak Energy Codes Specialist

kimberly.cheslak@imt.org codes@imt.org

