
Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

# Home Energy Rating Variability Study

#### 2018 National Energy Codes Conference

July 17, 2018

JEREMY WILLIAMS Building Energy Codes Program



## INTRODUCTION

**Question:** What variability might be expected under the Energy Rating Index (ERI) path of the IECC?

## Summary:

- DOE conducted a study looking at the consistency of home energy ratings
- Targeted limited number of new single-family homes
- Across U.S. climates, as represented across respective REEO regions
- HERS Index was chosen as focus of study

- Home Energy Rating System (HERS) is an index used to measure home energy efficiency
- Developed and administered by the Residential Energy Services Network (RESNET)
- Used in both new construction and existing home applications
- A HERS Index portrays the basic energy efficiency of the home, including basic performance and expected energy costs
- Certified HERS Rater assess the efficiency—renders a relative performance score (Rating)
- As energy use decreases, so does the HERS Index—about one point for every one percent improvement (baseline 100)

SOURCE: RESNET; <a href="https://www.resnet.us/hers-index">https://www.resnet.us/hers-index</a>

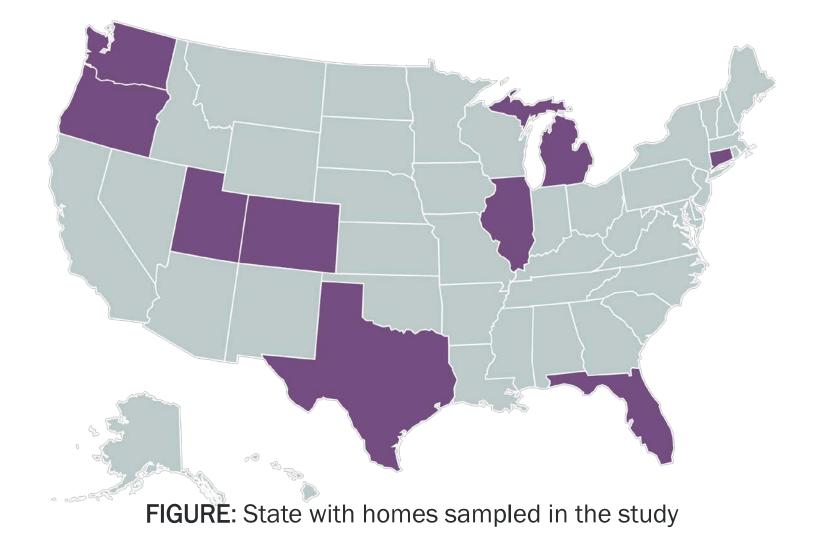
#### What Does HERS Have to Do with Codes?

- HERS has seen increasing popularity—in recent years several states have added a HERS compliance option
- Common format: HERS Index Score that must be met (or exceeded) in lieu of traditional compliance paths
- HERS Index has also been incorporated directly into the model code
- 2015 IECC introduced new performance path via Section R406—*Energy Rating Index*, or ERI
- Bolstered in 2018 IECC with incorporation of RESNET Standard 301 (by reference)

| CZ        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|-----------|----|----|----|----|----|----|----|----|
| 2015 IECC | 52 | 52 | 51 | 54 | 55 | 54 | 53 | 53 |
| 2018 IECC | 57 | 57 | 57 | 62 | 61 | 61 | 58 | 58 |

- Many stakeholders played a role in establishing the ERImultiple variations considered as part of ICC process
- IECC settled on approach where home must achieve an ERI at or below (better) than target threshold for each CZ
- Specified targets vary by only one point between most climate zones, and by a range of just five points across all climates
- In addition, must meet at least *mandatory* requirements as well as *prescriptive* envelope requirements of the 2009 IECC

- Attempt to understand how home energy ratings might function as a compliance mechanism
- Recognizing the ERI (like any new path) introduces new questions, risks and uncertainties to the compliance process
- ERI; shifting roles and responsibilities (third party)
- The precision of the ERI targets established in the IECC underscores the need for consistency in practice
- Specifically, the question of variability expected if enlisting the HERS Index to demonstrate compliance via the ERI path


## **Study Limitations**

- Study should not be considered statistically representative
- Limited number of states and homes
- Blind nature of the study came with certain limitations:
  - Asked raters for a non-confirmed rating
  - Timeframe did not allow for multiple site visits
  - Certain home attributes unobservable in the field
- Study did not attempt to understand the *why* behind the ratings (e.g., input variables that may be the cause of variability)

### Methodology

- REEO's sampled eleven homes across each of their six regions—total of **56 individual ratings**
- Identified a house ready for (or near) final inspections
- Each home was assessed by 4-6 different local RESNETcertified HERS raters
- Ratings scheduled over a one-week period (or less) to assure consistent field conditions and no overlap onsite
- The methodology required a blind study and raters were not aware that they were evaluating the same home
- Blindness was crucial to ensuring objectivity and to replicate conditions that could be present when following the ERI path

#### Methodology



- Raters were provided construction documentation and conducted onsite verification
- Conducted both plan review and field inspection
- Targeted outputs included the projected HERS Score and annual energy usage for each home
- Additional data and inputs also summarized
- REEO's coordinated individual home assessments and provided quality control—also coordinated site procedures
- Aggregated data and reported findings to DOE

#### RESULTS

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

## **Results: HERS Score by Home and Location**

| Location              |              | Α   | В   | С   | D   | E  | F  |
|-----------------------|--------------|-----|-----|-----|-----|----|----|
| Seattle, WA           |              | 76  | 71  | 79  | 75  | 74 | -  |
| Portland, OR          |              | 83  | 82  | 86  | 86  | 88 | -  |
| Orlando, FL           |              | 70  | 74  | 71  | 59  | -  | -  |
| Tallahassee, FL       |              | 71  | 62  | 72  | 74  | -  | -  |
| Dallas-Fort Worth, TX |              | 78  | 71  | 79  | 67  | 65 | 64 |
| Austin, TX            |              | 69  | 64  | 55  | 75  | 64 | -  |
| Denver, CO            |              | 67  | 70  | 79  | 68  | 99 | -  |
| Salt Lake City, UT    |              | 42  | 51  | 43  | 50  | -  | -  |
| Chicago, IL           |              | 44  | 42  | 51  | 44  | 49 | 40 |
| Grand Rapids, MI      |              | 65  | 60  | 58  | 60  | -  | -  |
| Derby, CT             | (without PV) | N/A | 55  | 43  | N/A | 55 |    |
|                       | (with PV)    | 19  | N/A | N/A | 28  | 30 | 22 |

#### Results: Project Annual Energy Use (MMBtu)

| Location              | Α     | В     | С     | D     | E     | F    |
|-----------------------|-------|-------|-------|-------|-------|------|
| Seattle, WA           | 55.01 | 82.37 | 83.17 | 69.80 | 64.57 |      |
| Portland, OR          | 52.99 | 55.69 | 46.26 | 47.36 | 54.98 |      |
| Dallas-Fort Worth, TX | 97.1  | 89    | 66    | 84.5  | 53.4  | 78.6 |
| Austin, TX            | 68.5  | 50.3  | 49.4  | 58.8  | 62.1  |      |
| Denver, CO            | 141.4 | 157.4 | 121.7 | 105.4 | 203.4 |      |
| Salt Lake City, UT    | 39.0  | 44.5  | 41.8  | 45.3  |       |      |
| Chicago, IL           | 61.4  | 80.2  | 92.2  | 83.0  | 77.3  | 55.4 |
| Grand Rapids, MI      | 93.2  | 60.8  | 85.0  | 79.0  |       |      |
| Derby, CT             | 28.4  | 80.2  | 44.2  | 59.3  | 60.9  |      |

- Average per-house variability observed in the study was approximately 13 points on the HERS Index
- Single-home variability (max vs. min) ranged from as low of 6 points (Portland) to high of 32 points (Denver)
- The majority of homes (7 of the 11) experienced variability of 10 or more points
- Similarly, projected annual energy consumption ranged from a low of 6.3 MMBtu to a high of 98 MMBtu averaging 36 MMBtu for an individual home

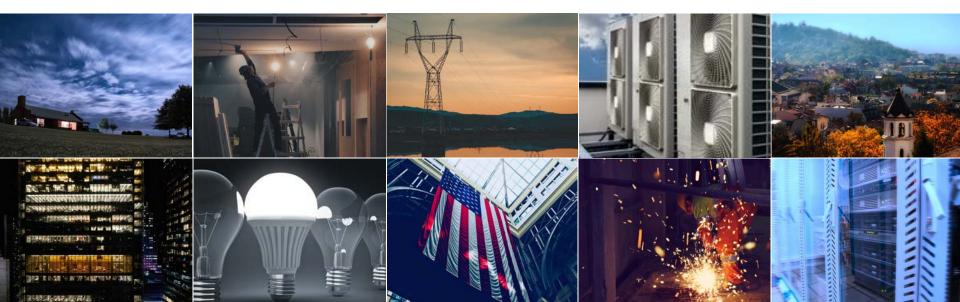
- Several inconsistencies span items directly observed by the rater as well as those that were provided as part of the home's construction documents
- Notable examples: Geometry (e.g. floor area), HVAC, equipment set points, number of bedrooms, duct location,
- A wide range of software was noted:
  - The average home being rated using three different versions of software.
  - One home was rated with five different versions of REM/Rate software amongst six raters



- Need for a broader study to more fully assess the variability that can be expected under the ERI path
- Address the related question of what levels of variability are ultimately acceptable to the industry
- Help inform areas for targeted training, QA, as well as future ERI targets
- Several individual variables could also benefit from further exploration, including:
  - Delineation of inputs that are prone to subjectivity
  - Variability due to the chosen software package
  - Issues inherent to the rating system and calculation methodology

#### **Study Contributors**

- Jeremy Williams, U.S. Department of Energy
- Ian Blanding (MEEA)
- Darren Port (NEEP)
- Bing Liu (NEEA)
- Richard Morgan (SPEER)
- Lauren Westmoreland (SEEA)
- Nancy Kellogg (SWEEP)




Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

#### JEREMY WILLIAMS

Building Energy Codes Program U.S. Department of Energy jeremy.Williams@ee.doe.gov

Thanks for attending the 2018 National Energy Codes Conference!

