#### Low-Rise Multifamily Code Compliance Study Results

U.S. Department of Energy Building Energy Codes Program NECC Webinar Series AIA Provider #: I014 AIA Course #: BECPWS102020 ICC Provider Course #25989 October 20, 2020





DOE Low-Rise Multifamily | Energy Code Field Studies |

Presentation of Results 20 October 2020

### Introduction & Overview

#### Robert Davis, Principal Investigator Ecotope



### Agenda

- Welcome & Context
- Overall Goals, Objectives
- Notable results from field data and simulations
- Q&A









## Low-Rise MF Project Team

### Why This Study?

#### Jeremy Williams, Building Technologies Office U.S. Department of Energy



### DOE Energy Code Field Studies





**Single-Family Residential** 



#### Low-Rise Multifamily



### Collective LRMF Field Study Goals

Estimate regulated energy use in typical low-rise multifamily buildings

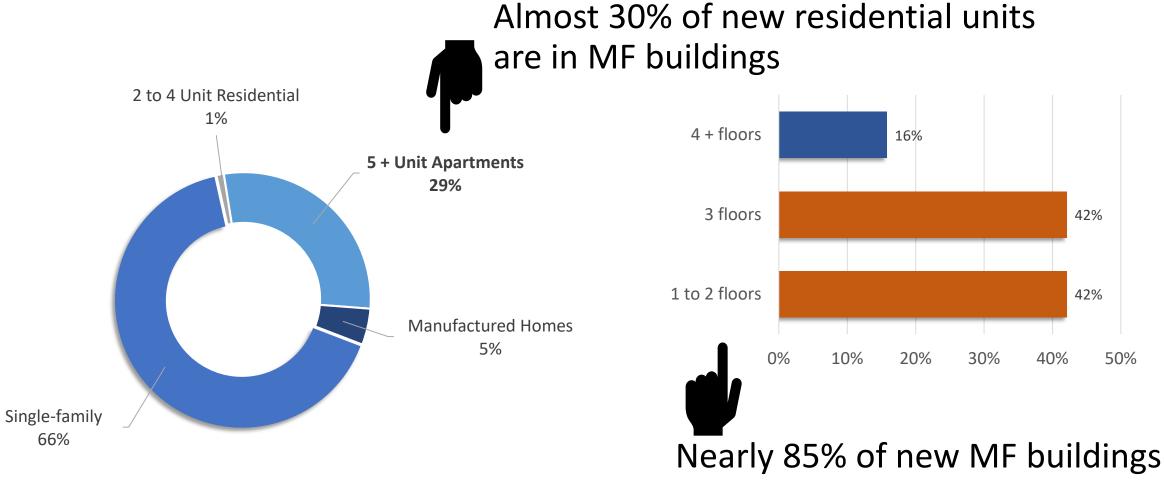
Identify opportunities for energy and cost savings by meeting energy code

Improve understanding of building characteristics of this under-represented building type

### LRMF Field Study Objectives Overview

#### CHARACTERISTICS REVIEW AND ENERGY USE ANALYSIS

- Adapt SF protocol to low-rise MF
- Collect baseline and energy characteristics
- Model energy use


#### **AIR TIGHTNESS TESTING**

- Relationship between test types?
- Range of air leakage observed
- Recommendations for revising MF ATT protocols and requirements

#### **MARKET RESEARCH**

- Gain better understanding of firms in LRMF construction market
  - Design/build practices
  - Energy code education/training

### Why Low-Rise Multifamily?



#### are low-rise

### **Target Population**

#### <u>Includes</u>

- New construction (~3 years)
- 1-3 stories, 5 + units
- Mixed occupancy buildings

#### **Excludes**

- Single-family
- Townhouses/rowhouses
- Duplexes, triplexes, fourplexes
- Dorms, assisted living, nursing homes, hotels, etc.
- High rise MF (4 stories and up)

### Building Types

#### GARDEN STYLE



#### COMMON ENTRY



Exterior corridors Exterior unit entry

Interior corridors Interior unit entry

### Sample Design



#### **Target Population**

- Main source: Dodge Data and Analytics (via PNNL)
- Total new LRMF projects over three-year time frame: 2014-2016



#### Sample Frame

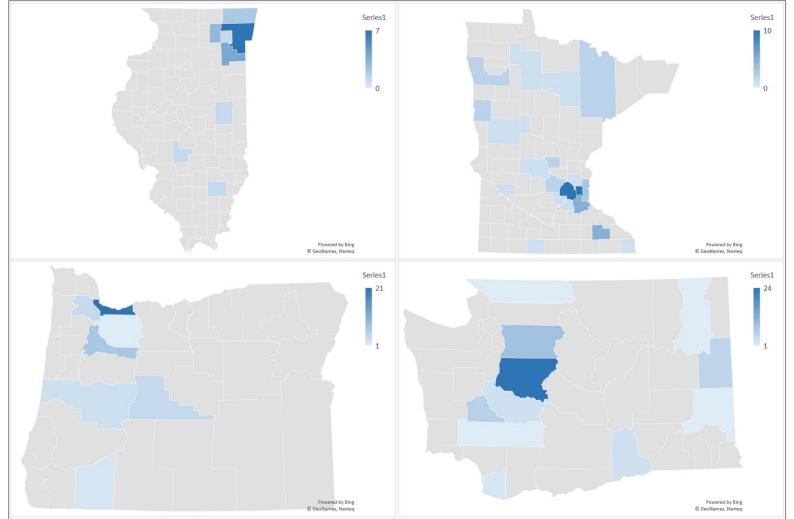
- Obtain building lists from jurisdictions
- Develop randomized recruiting lists



#### Sampling Unit

- Primary: <u>Building</u>
- Secondary: Dwelling <u>Unit</u>

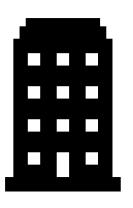
# ₿₽₽₽


#### **Statistical Criteria**

- 90/10 confidence/precision (building level)
- 0.66 coefficient of variation (CV) for key variables

25 buildings per state 3-4 units per building

### Geography


- State-level sample
- LRMF concentrated around large and small cities
- In some cases, the sampling approach resulted in surveying a near-census of all eligible buildings



### Two-Stage Sample Design

#### **Primary Sampling Unit**

- Building
- Simple random sample



#### **Secondary Sampling Unit**

- Living unit (most of the ft<sup>2</sup> at each site)
- Simple random sample within building
  - Assume number of units per building are similar across population
  - Visit fixed number of units per building



### Key Compliance Items

| Component                                              | Data Collected             | Code Reference <sup>+</sup>                |
|--------------------------------------------------------|----------------------------|--------------------------------------------|
| Building                                               |                            |                                            |
| Exterior wall insulation                               | R-value                    | Tables R402.1.2, R402.1.4                  |
| Ceiling insulation                                     | R-value                    | Tables R402.1.2, R402.1.4                  |
| Foundation insulation                                  | R-value                    | Tables R402.1.2, R402.1.4                  |
| Window                                                 | U-factor and SHGC          | Tables R402.1.2, R402.1.4                  |
| Exterior lighting                                      | Wattage                    | Section C405.5                             |
| Central HVAC*                                          | Efficiency rating          | Section C403, (IECC section R403.8)        |
| Pipe insulation*                                       | R-value                    | Section C403.2.10                          |
| Central DHW*                                           | Efficiency rating          | Section C403                               |
| Circulating system*                                    | Pump controls              | Section C404.6                             |
| Envelope tightness                                     | Air changes per hour (ACH) | Section R404.4.1.2                         |
| Common Areas                                           |                            |                                            |
| Lighting                                               | Lighting power density     | Section C405.4.2                           |
| Corridor ventilation*                                  | Air flow (CFM/ft2)         | Table 403.3 (IMC)                          |
| Units                                                  |                            |                                            |
| Lighting                                               | Percent high efficacy      | Section R404.1                             |
| Ventilation                                            | Flow rating                | Section M1507 (IRC), (IECC section R403.6) |
| Envelope tightness                                     | Air changes per hour (ACH) | Section R404.4.1.2                         |
| <i>+</i> - IECC reference. Individual state energy cod | le references vary.        |                                            |

\* Additional items added for low-rise multifamily study not included in single-family study

#### Parameter Summaries

| Variable                                                      | Sampling Parameter |
|---------------------------------------------------------------|--------------------|
| Source: RECS National Summary, 2000–2009 Buildings            |                    |
| DHW in-unit                                                   | 86.4%              |
| DHW electricity                                               | 71.3%              |
| Lighting high-efficacy                                        | 1.12 CV            |
| Lighting total lamps turned on at least one hour per day      | 1.01 CV            |
| Number of major appliances per unit                           | 0.33 CV            |
| Unit floor area                                               | 0.58 CV            |
| Units in building                                             | 1.55 CV            |
| Unit EUI (kBtu/sqft)                                          | 0.88 CV            |
| Has warm air furnace (not including heat pump)                | 77.1%              |
| Has heat pump                                                 | 14.9%              |
| Source: RLW Northwest Summary, 2003–2006 Buildings            |                    |
| Hardwired LPD                                                 | 0.66 CV            |
| Overall LPD                                                   | 0.67 CV            |
| Number of Fixtures                                            | 1.06 CV            |
| Number of Lamps                                               | 0.86 CV            |
| Source: Single-Family DOE Residential Energy Code Field Study |                    |
| SF LPD? SF high efficacy?                                     |                    |
| Selected Parameters for DOE LRMF Study                        |                    |
| Buildings (Future Studies)                                    | 0.40 CV and 80%    |
| Buildings (Pilot Study)                                       | 0.30 CV and 90%    |
| Units                                                         | 0.66 CV            |



#### "Location"



### Data Collection Approach

#### Buildings

- Single site visit in completed buildings
- Pre-entry of data from plans, verified on site
  - Includes data source tracking
- Recruiting from Dodge and building departments

#### Units

- Random selection by field technician
- No manager units
- Ideally unoccupied, but not required

### Building Distribution Geography and Codes

| State | Sample<br>Frame<br>Size | Target<br>Sample | Agreed to<br>Participate | Success<br>Rate | <ul> <li>Applicable code either 2012 or<br/>2015 IECC, with state amendments</li> <li>Mixture of residential and<br/>commercial code elements (mostly)</li> </ul> |
|-------|-------------------------|------------------|--------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| п     | 105                     | 25               | 21                       | 20%             | <ul> <li>sidential)</li> <li>Surveyed sites in PacNW mostly in</li> </ul>                                                                                         |
| MN    | 250                     | 25               | 25                       |                 | Climate Zone 4 (marine); a few in<br>Climate Zone 5                                                                                                               |
| OR    | 249                     | 25               | 24                       | 10%             | <ul> <li>Surveyed sites in Midwest mix of<br/>Climate Zones 5 (most of IL), 6, and</li> </ul>                                                                     |
| WA    | 463                     | 25               | 25                       | 5%              | 7 (northern MN)                                                                                                                                                   |

### **Building Characteristics Summaries**

#### Adria Banks, Research Analyst *Ecotope*

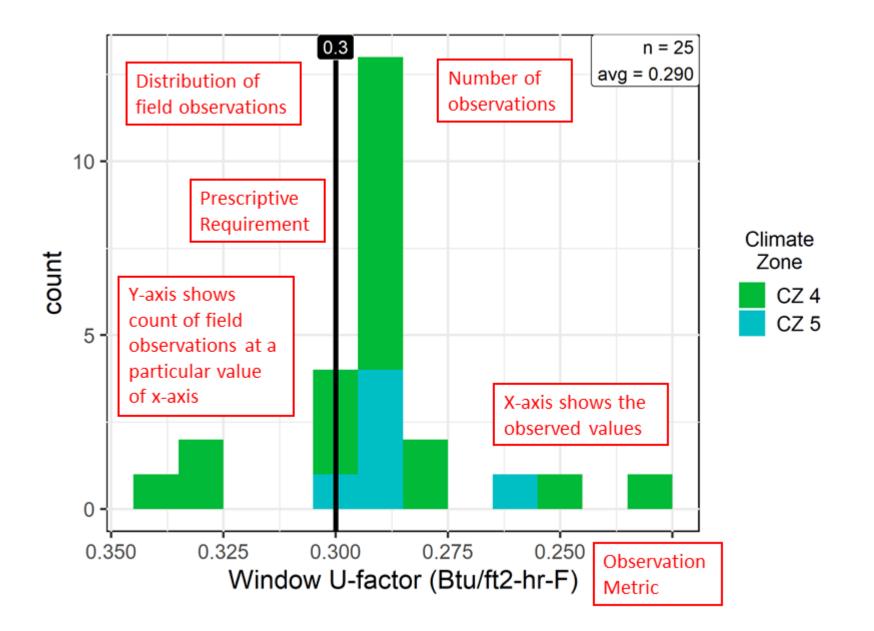


### Key Energy Characteristics

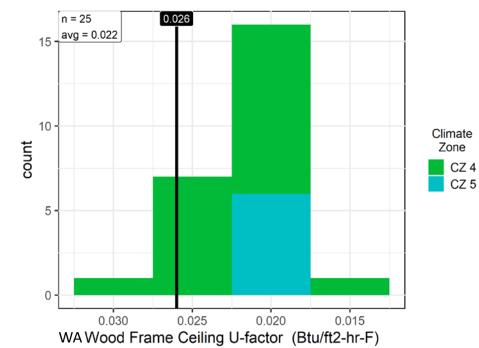
BUILDING AND COMMON AREAS

Thermal Envelope

**HVAC Systems** 

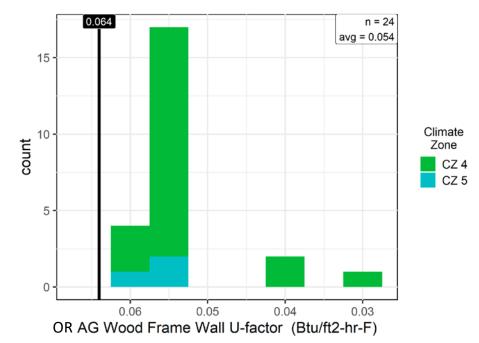

Hot Water

Interior Lighting


#### DWELLING UNITS

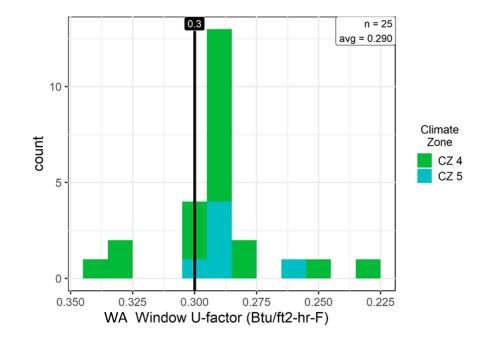
High Efficacy Lighting

Local HVAC



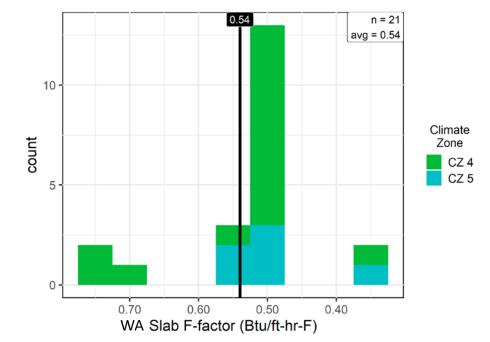

### Wood Frame Ceiling/Roof U-Factor




| State        | IL       | MN       | OR       | WA       | Overall     |
|--------------|----------|----------|----------|----------|-------------|
| Climate Zone | CZ5      | CZ6/CZ7  | CZ4/CZ5  | CZ4/CZ5  |             |
| Requirement  | 0.026    | 0.026    | 0.027    | 0.026    | 0.026/0.027 |
| Average      | 0.023    | 0.023    | 0.023    | 0.022    |             |
| Compliance   | 14 of 18 | 22 of 24 | 24 of 24 | 24 of 25 | 84 of 91    |
| Rate         | (78%)    | (92%)    | (100%)   | (96%)    | (92%)       |

#### Exterior Above-Grade Wood-Frame Wall U-Factor




| State           | IL       | MN            | OR       | WA       | Overall           |
|-----------------|----------|---------------|----------|----------|-------------------|
| Climate Zone    | CZ5      | CZ6/CZ7       | CZ4/CZ5  | CZ4/CZ5  |                   |
| Requirement     | 0.057    | 0.057 / 0.056 | 0.064    | 0.056    | 0.056/0.057/0.064 |
| Average         | 0.051    | 0.054         | 0.054    | 0.054    |                   |
| Compliance Bate | 10 of 11 | 18 of 22      | 24 of 24 | 24 of 24 | 76 of 82          |
| Compliance Rate | (91%)    | (82%)         | (100%)   | (96%)    | (93%)             |

#### Window U-Factor



| State           | L        | MN       | OR       | WA       | Overall        |
|-----------------|----------|----------|----------|----------|----------------|
| Climate Zone    | CZ5      | CZ6/CZ7  | CZ4/CZ5  | CZ4/CZ5  |                |
| Requirement     | 0.32     | 0.32     | 0.35     | 0.30     | 0.30/0.32/0.35 |
| Average         | 0.302    | 0.304    | 0.317    | 0.290    |                |
| Compliance Data | 15 of 21 | 20 of 25 | 21 of 24 | 22 of 25 | 78 of 95       |
| Compliance Rate | (71%)    | (80%)    | (88%)    | (88%)    | (82%)          |

### Slab F-Factor



| State           | IL       | MN         | OR      | WA       | Overall       |
|-----------------|----------|------------|---------|----------|---------------|
| Climate Zone    | CZ5      | CZ6/CZ7    | CZ4/CZ5 | CZ4/CZ5  |               |
| Requirement     | 0.54     | 0.52 / 0.4 | 0.54    | 0.54     | 0.4/0.52/0.54 |
| Average         | 0.49     | 0.45       | 0.57    | 0.54     |               |
| Compliance Date | 11 of 14 | 10 of 12   | 7 of 16 | 16 of 21 | 44 of 63      |
| Compliance Rate | (79%)    | (83%)      | (44%)   | (76%)    | (70%)         |

#### Service Hot Water



|                 |             |                | IL  | MN  | OR  | WA  |
|-----------------|-------------|----------------|-----|-----|-----|-----|
| <b>Flactr</b> i | Floctricity | HP             |     |     | 4%  | 4%  |
| Central         | Electricity | Boiler/Storage |     |     |     |     |
|                 | Gas         | Boiler/Storage | 64% | 92% | 21% | 20% |
|                 | Electricity | Storage        | 24% |     | 75% | 76% |
| In-unit         | Gas         | Storage        | 14% | 8%  |     |     |

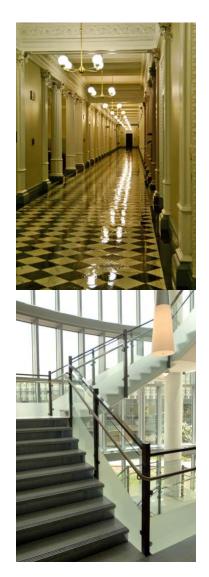
### POLLING

#### "Profession"



### Common Area Heating/Cooling Systems

Heating



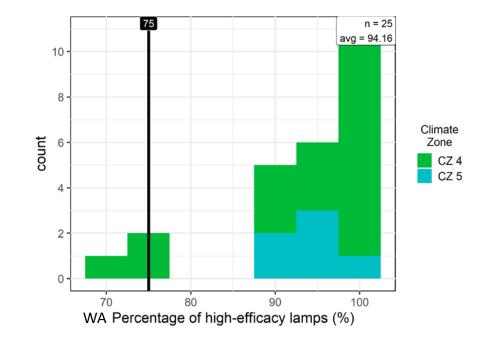

|                     | IL  | MN      | OR      | WA      |
|---------------------|-----|---------|---------|---------|
|                     | CZ5 | CZ6/CZ7 | CZ4/CZ5 | CZ4/CZ5 |
| Electric resistance | 25% | 17%     | 25%     | 70%     |
| Split system HP     | 5%  |         | 58%     | 10%     |
| Gas Boiler          | 5%  | 22%     |         |         |
| Gas Furnace         | 60% | 52%     | 8%      | 10%     |
| None                | 5%  | 9%      | 8%      | 10%     |

#### Cooling

|                 | IL  | MN      | OR      | WA      |  |
|-----------------|-----|---------|---------|---------|--|
|                 | CZ5 | CZ6/CZ7 | CZ4/CZ5 | CZ4/CZ5 |  |
| Split system AC |     | 4%      |         |         |  |
| Split system HP | 20% | 30%     | 58%     | 30%     |  |
| PTAC            | 45% | 35%     | 8%      |         |  |
| Water source HP |     | 13%     |         |         |  |
| None            | 35% | 9%      | 33%     | 70%     |  |
|                 |     |         |         |         |  |

### Interior Lighting




#### MN OR **Overall** State IL WA Code Year 2012/2015 2011/2014 2012/2014 2015 --0.7/0.66 0.66/0.53 0.7 Requirement 0.41 \_\_\_ 0.28 Average 0.98 0.40 0.32 --9 of 9 50 of 58 12 of 16 22 of 23 7 of 10 Compliance Rate (75%) (96%) (70%) (100%)(86%)

#### Stairwells

Corridors

| State           | IL        | MN       | OR        | WA        | Overall  |
|-----------------|-----------|----------|-----------|-----------|----------|
| Code Year       | 2012/2015 | 2015     | 2011/2014 | 2012/2015 |          |
| Requirement     | 0.7/0.69  | 0.7      | 0.49      | 0.69/0.55 |          |
| Average         | 0.5       | 0.42     | 0.34      | 0.32      |          |
| Compliance Pate | 12 of 16  | 17 of 19 | 11 of 13  | 10 of 10  | 50 of 58 |
| Compliance Rate | (75%)     | (89%)    | (85%)     | (100%)    | (86%)    |

### Dwelling Unit Lighting



| State           | IL        | MN       | OR        | WA        | Overall  |
|-----------------|-----------|----------|-----------|-----------|----------|
| Code Year       | 2012/2015 | 2015     | 2011/2014 | 2012/2014 |          |
| Requirement     | 75%       | 75%      | N/A       | 75%       | 75%      |
| Average         | 97%       | 99.5%    | 95%       | 94%       |          |
| Compliance Date | 19 of 19  | 25 of 25 |           | 24 of 25  | 68 of 69 |
| Compliance Rate | (100%)    | (100%)   | N/A       | (96%)     | (99%)    |

### Dwelling Unit Heating Systems



|                                 | IL  | MN      | OR      | WA      |
|---------------------------------|-----|---------|---------|---------|
|                                 | CZ5 | CZ6/CZ7 | CZ4/CZ5 | CZ4/CZ5 |
| Electric resistance             | 10% | 4%      | 42%     | 80%     |
| Split system HP                 | 14% |         | 29%     | 8%      |
| PTHP                            | 5%  |         | 25%     | 8%      |
| Gas Furnace                     | 67% | 68%     | 4%      | 4%      |
| Hydronic<br>(gas boiler)        | 5%  | 12%     |         |         |
| Water source HP (gas<br>boiler) |     | 16%     |         |         |

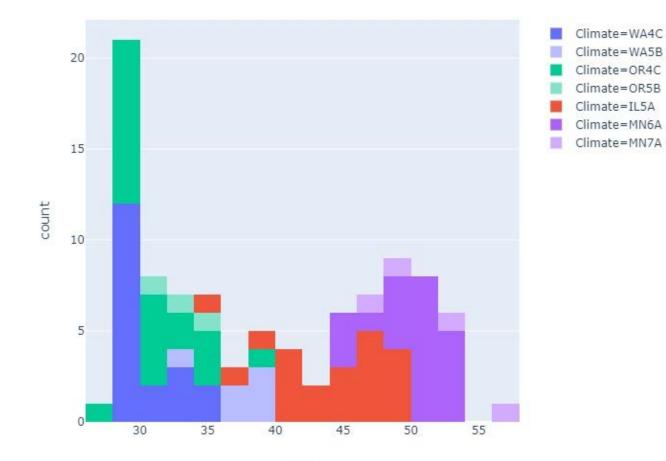
### Dwelling Unit Cooling Systems



|                 | IL  | MN      | OR      | WA      |
|-----------------|-----|---------|---------|---------|
|                 | CZ5 | CZ6/CZ7 | CZ4/CZ5 | CZ4/CZ5 |
| Split system AC | 62% | 8%      | 8%      | 4%      |
| Split system HP | 14% |         | 25%     | 8%      |
| PTAC            | 19% | 64%     | 4%      | 8%      |
| PTHP            | 5%  |         | 29%     | 8%      |
| Water source HP |     | 16%     |         |         |
| Window AC       |     | 12%     |         | 8%      |
| None            |     |         | 33%     | 64%     |

### **Energy Use Analysis**

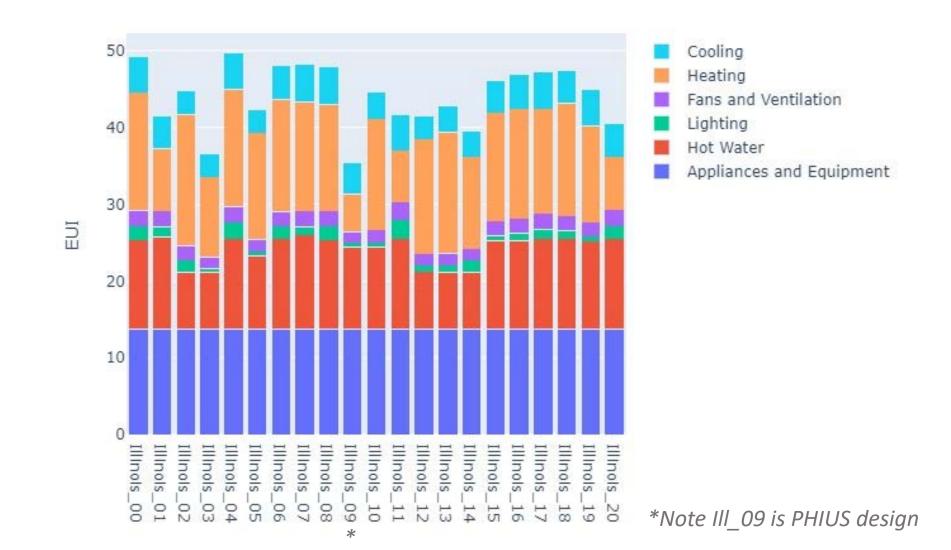
#### Scott Spielman, Research Engineer Ecotope




### Energy Use Analysis

- Prototype approach, both common entry and garden style. Used PNNL 'buildings'
- EnergyPlus simulations were run on each of the 95 buildings surveyed by altering key inputs (envelope performance, mechanical system, hot water system, and lighting power) on 4 different seed models.
- Results expressed in EUI (energy use intensity); dimensions are kBtu/ft<sup>2</sup>-yr.
- Simulation results were used to generate an expected EUI range for buildings in each state and understand end-use breakdown.
- Histogram and End-Use EUI plots were generated from results.

#### EUI Histograms

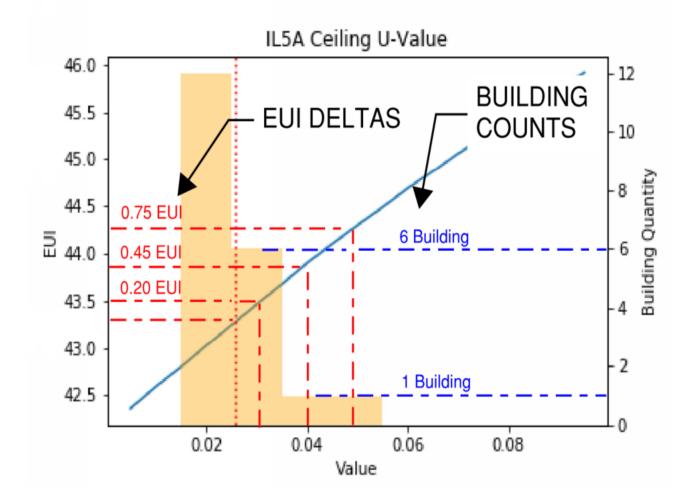

All States



EUI

#### State-Wide EUI Distribution (IL)

Illinois




## Measure Analysis

- The goal of measure analysis simulation is to quantify the energy and cost savings for bringing each building component up to code.
- EnergyPlus was used to create performance maps for each building component, which were used to determine savings.
- Only envelope and lighting components are included. It was assumed that all the HVAC equipment used in the buildings surveyed was code-minimum compliant\*.
- Results are then extrapolated to the building stock, treating surveyed buildings as a representative sample.

\*The characteristics review found only a tiny number of systems that were non-compliant and other systems that greatly exceeded code minimums

#### Measure Analysis- EUI-based Adjustment



Each modeled EUI delta is multiplied by the number of corresponding buildings, shown in blue. In the example above a total of 2.4 modeled EUI is calculated for non-compliance.

#### Statewide Annual Measure Level Savings (IL)

| Savings<br>Measure           | Electricity<br>Savings<br>(kWh /<br>unit) | Natural<br>Gas<br>Savings<br>(Therms<br>/ unit) | Total<br>Savings<br>(kBtu /<br>unit) | Total<br>Number<br>of Units<br>Built in<br>State | Total<br>Energy<br>Savings<br>(MMBtu) | Total<br>Energy<br>Cost<br>Savings<br>(\$) | Total State<br>Emissions<br>Reduction<br>(MT CO2) |
|------------------------------|-------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------------------------|
| Ceiling<br>U-Value           | 4                                         | 0.83                                            | 98                                   | 17,789                                           | 1,742                                 | 26,545                                     | 276                                               |
| Exterior<br>Wall U-<br>Value | 4                                         | 1.11                                            | 126                                  | 17,789                                           | 2,238                                 | 32,745                                     | 356                                               |
| Corridor<br>LPD              | 6                                         | 0.00                                            | 19.06                                | 17,789                                           | 339                                   | 10,935                                     | 45                                                |

#### Energy & Measure Analysis Summary

- Overall, most buildings met or bettered code prescriptive requirements.
- Climate, mechanical system type, and hot water system type had the biggest impacts on modeled EUI; installed systems almost always met (or exceeded) minimum requirements.
- High efficacy lighting was common; there was some improvement possible in exterior/common area lighting (typically regulated by commercial code).

#### Market Research Study

#### Scott Pigg, Principal Researcher Slipstream



# Market Research

#### Gain insights on:

- nature of the firms working in the LRMF market
- knowledge of energy-code requirements for LRMF
- availability of code training
- need for code training

#### **Closed-ended survey sent to more than 800 firms**

- Developers
- A&E companies
- Contractors
- Facility managers

Interviews with code officials and others in each state

#### Survey respondents (n=44)

#### Interview respondents (n=21)

| Company Type                 | Number of Responses |
|------------------------------|---------------------|
| Developer                    | 19                  |
| A&E Firm                     | 14                  |
| General Contractor           | 6                   |
| HVAC Contractor              | 2                   |
| Other                        | 3                   |
| Geographic Reach of firm     |                     |
| State                        | 27                  |
| Regional                     | 10                  |
| National                     | 5                   |
| Construction Delivery Method |                     |
| Design-Build-Bid             | 9                   |
| Design-Build                 | 8                   |
| Spec-Build                   | 7                   |
| Construction Manager at Risk | 3                   |
| Integrated Property Delivery | 2                   |

| Role                                 | Number<br>Interviewed |
|--------------------------------------|-----------------------|
| State Building/Energy Code Official  | 2                     |
| County Building/Energy Code Official | 3                     |
| City Building Code/Energy Official   | 9                     |
| Other*                               | 7                     |
| Total interviews                     | 21                    |

Other: staff from building associations (2); university energy program (2); air leakage testing company (2); and non-profit energy policy organization (1).

# LRMF built by firms that work in a variety of construction types

Reported percent of business by building type, for developers, A&E firms and general contractors (n=34).

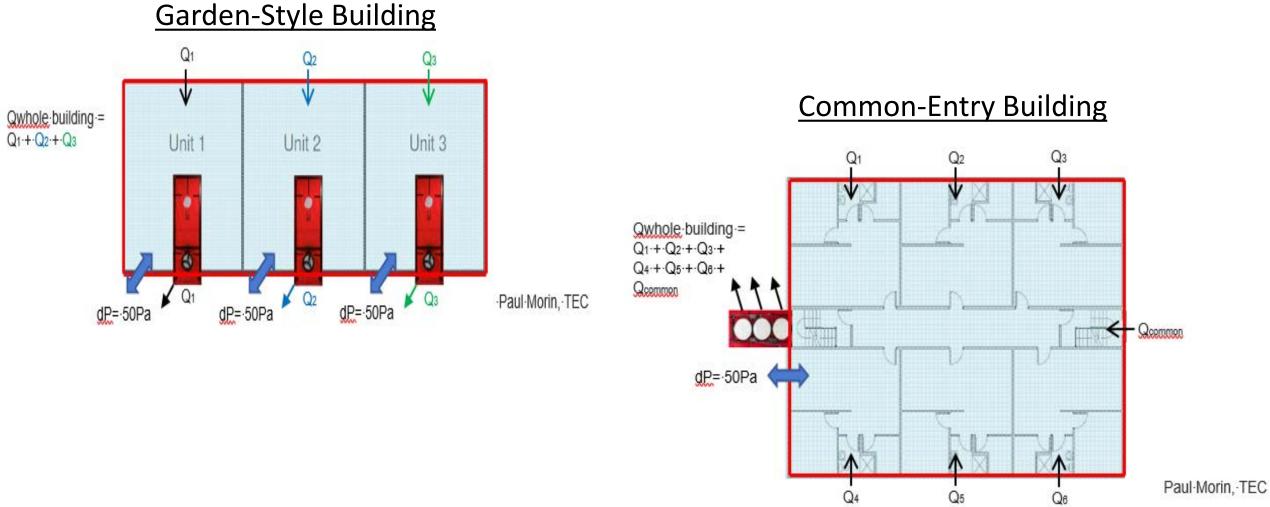
| Building Type                     | Mean | Range     |
|-----------------------------------|------|-----------|
| Single-family homes               | 13%  | 0 to 70%  |
| Multifamily buildings, 2-4 units  | 20%  | 0 to 100% |
| Apartment buildings, 1-3 stories  | 35%  | 0 to 100% |
| Condominiums, 1-3 stories         | 4%   | 0 to 15%  |
| Multifamily buildings, 4+ stories | 34%  | 0 to 100% |
| Mixed-use buildings               | 22%  | 2 to 95%  |
| Commercial buildings              | 21%  | 0 to 70%  |
| Other (unstated)                  | 2%   | 0 to 62%  |
| Number of types cited             | 3.6  | 1 to 7    |

#### 2/3rds of firms work on fewer than 10 projects per year

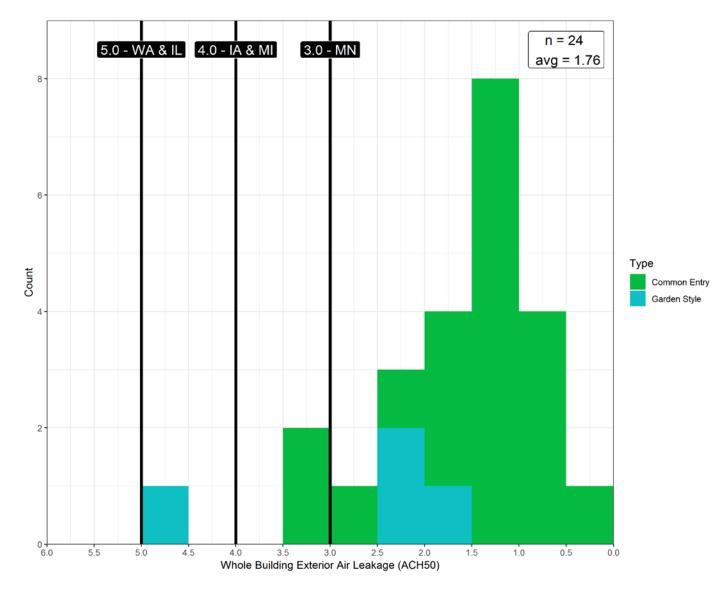
#### Residential Code Knowledge and Training

- Confusion about applicable code (residential vs commercial) for LRMF!
  - particularly in Minnesota and Oregon
- Code officials and online resources are main sources of information about code
- Developers rely on contractors and subcontractors to know the code
- Architects feel they know the code that applies to their work
- Survey respondents identified issues with understanding and complying with the code but half are uninterested in residential code training.
- Code officials say...
  - ...code generally well-followed
  - ...issues stem primarily from a skillset gap or lack of knowledge
  - ...air- and duct-sealing testing requirements most common compliance issue

## Air Tightness Testing Study

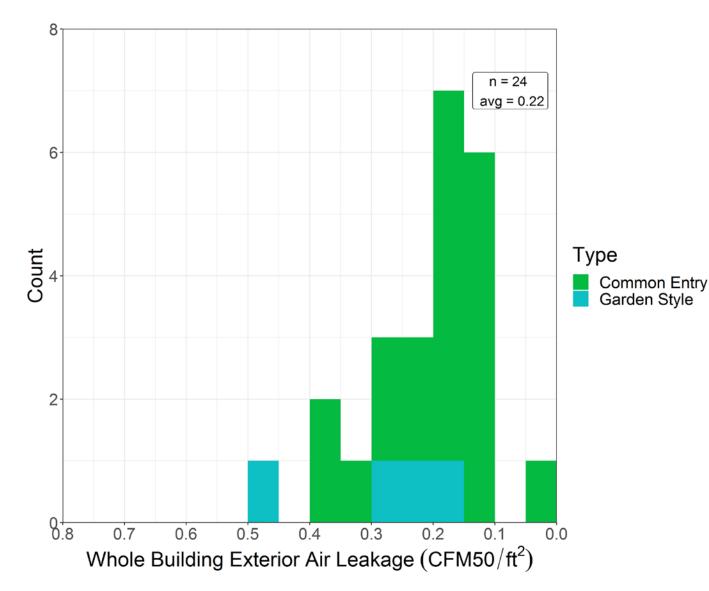

#### **Dave Bohac**, Director of Research *Center for Energy and Environment*




# Air Tightness Testing (ATT) Study Objectives

- Perform 25-30 tests with semi-automated blower door system in Midwest and Pacific NW
- Both common entry and garden style (exterior entry)
- Determine whether relationship exists between tests
  - Whole building vs compartmentalization vs unit exterior
  - What variables affect predictive power for energy use?
    - Provide envelope air leakage protocol
    - Provide guidance for code language
    - Assess energy impact of ATT using this protocol

#### Testing Set Up: whole building tests




# Whole Building Leakage: ACH<sub>50</sub>

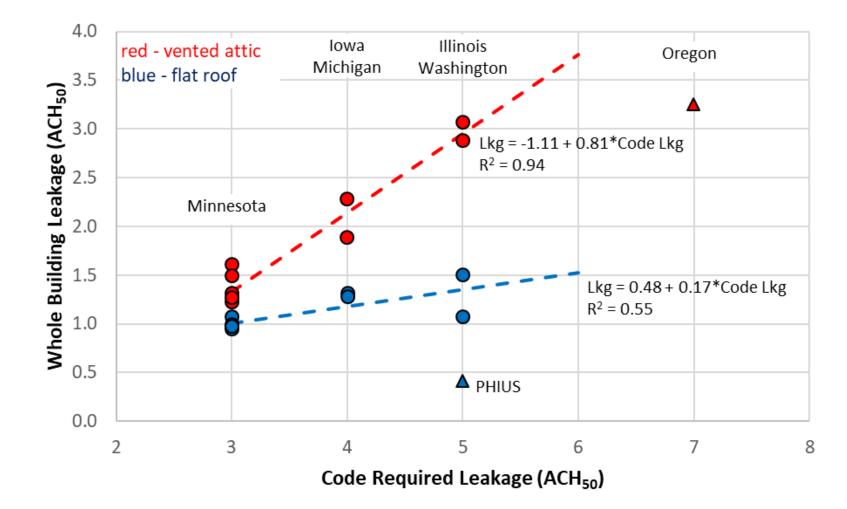


- Summary
  - 100% compliance
  - 3 bldgs > 3 ACH<sub>50</sub>
  - Average = 1.61
  - Min = 0.41 (IL Passive House)
  - Max = 4.72
- State averages
  - MN= 1.34
  - IL = 1.47 (1.82 w/o PH)
  - IA = 1.63
  - MI = 1.89
  - OR = 2.81
  - WA = 3.89

# Whole Building Leakage: CFM<sub>50</sub>/ft<sup>2</sup>

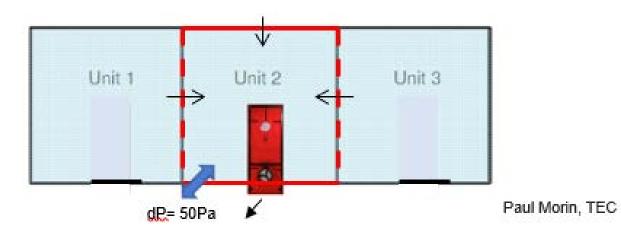


- Summary
  - Average = 0.23
  - Min = 0.05 (IL Passive House)
  - Max = 0.47
  - 58% < 0.20
  - 71% < 0.25
  - 83% < 0.30
- State averages
  - MN= 0.18
  - IL = 0.18
  - IA = 0.24
  - MI = 0.28
  - OR = 0.33
  - WA = 0.37

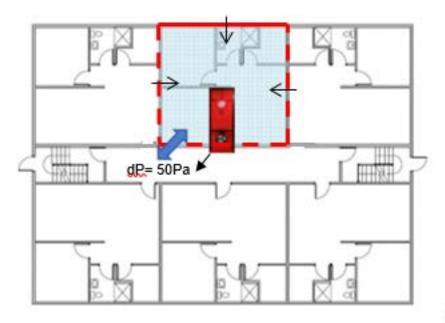

 $CFM_{50} \times 1.3 = CFM_{75} (n=0.65)$ 0.25  $CFM_{75}/ft^2 = 0.19 CFM_{50}/ft^2_{52}$ 

# Building & Design Characteristics

That Could Impact Envelope Leakage

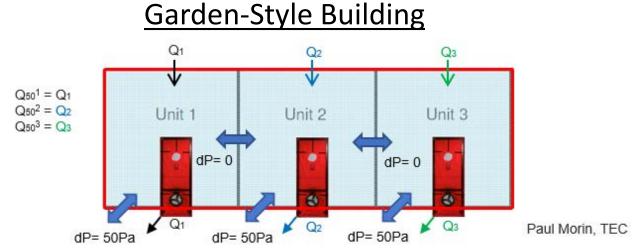

- Municipality air leakage code requirement/enforcement?
  - Test type and max acceptable
- Ceiling-roof (flat or vented attic)
- Program requirement for air leakage test
  - Program, test type, max acceptable (target or requirement)
- Space below lowest level (slab, garage, basement, commercial)
- Air barrier design approach
  - Exterior, above grade walls
  - Demising walls
  - Ceiling-roof
- Common Entry or Garden Style

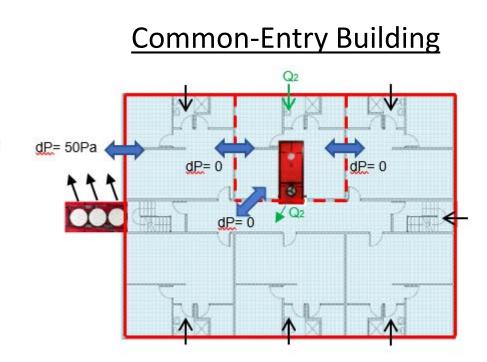
#### Building & Design Characteristics Significant: type of roof and code required leakage Not Significant: energy program, space below, type of exterior air barrier




# Testing Set Up: unit <u>compartmentalization</u> tests = total leakage

**Garden-Style Building** 



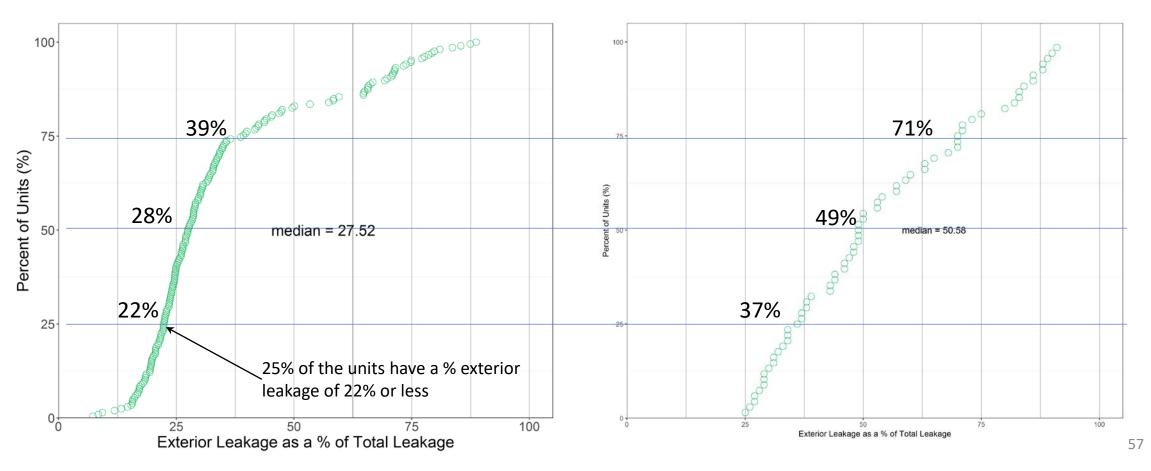


**Common-Entry Building** 



Paul Morin, TEC

# Testing Set Up: unit <u>guarded</u> tests = exterior leakage






Paul Morin, TEC

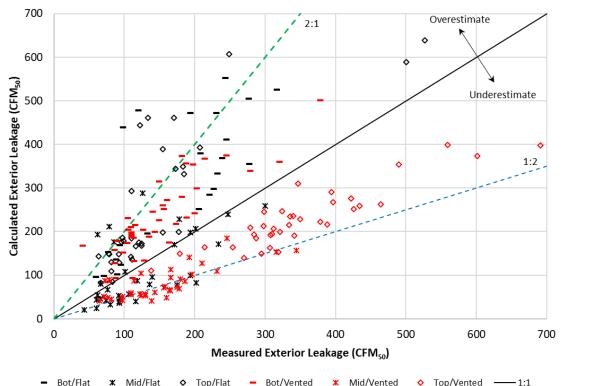
### Unit Total and Exterior Leakage

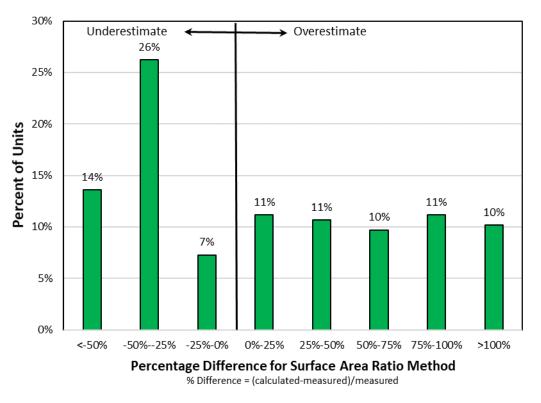
- Common-Entry
  - Total = 2.72 ACH<sub>50</sub>
  - Exterior = 1.41 ACH<sub>50</sub>
  - % Exterior = 34%

- Garden-Style
  - Total = 5.13 ACH<sub>50</sub>
  - Exterior = 2.72 ACH<sub>50</sub>
  - % Exterior = 49.4%



# POLLING


Further Research

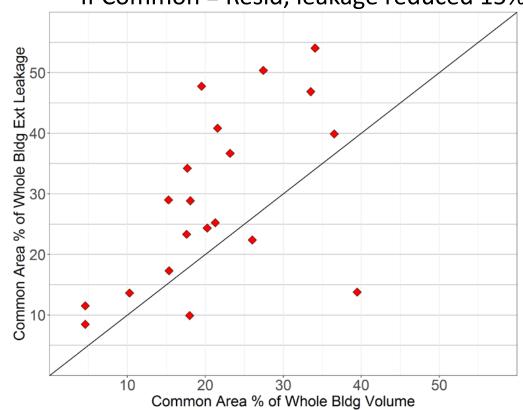



### Compute Exterior Leakage from Total Leakage

Exterior Leakage = Total Leakage \* (Exterior Surface Area/Total Surface Area)


- Computed leakage within 25% of measured value for only 18% of the units
- 50% overestimate for 31% of the units
- 50% underestimate for 14% of the units






# Impact of Common Space

- Exterior Leakage (ACH<sub>50</sub>)
  - Residential Units: 1.36 ACH<sub>50</sub>
  - Common: 2.34 ACH<sub>50</sub>
  - Common > Residential for 17 of 20
  - Common > 2x Resid for 7 buildings



- Volume vs Leakage
  - Common averages 21% of volume
  - Common averages 29% of leakage
  - For 30% of bldgs., Common > 40% leakage



• If Common = Resid, leakage reduced 15%

## Notable Air Leakage Results

- Whole building procedure equipment/labor-intensive, especially for garden style
- All buildings met state-required leakage levels for whole-building air leakage
- Type of building, roof type, and code required leakage had significant impact on leakage
- Common areas leakier than residential units & have significant impact on whole building leakage
- Percent exterior leakage: common-entry= 34%, garden-style = 54%
- Surface area ratio method => poor prediction of exterior leakage

# Other Air Leakage Report Items

- Accuracy of exterior leakage computed from total based on building type, level in building, and roof type
- Accuracy of exterior leakage computed from total leakage using adjacent unit dP (Garden Style Only)
- Breakdown of interior leakage to common space and adjoining units
- Impact of closed adjoining units for compartmentalization test
- Variability of measured leakage for units in a building and on same floor.
- Number of fans needed for whole building tests
- Modeling of air leakage energy penalty with different levels of (interior and exterior) leakage and ventilation systems

## Future Research

- Measured exterior & total leakage for additional units:
  - Are trends consistent with this study
  - Exterior leakage from total for garden-style buildings use adjacent unit dP?
  - Typical leakage for other parts of U.S.
- Whole building measurements
  - Typical leakage for other parts of U.S.
  - Trend for exterior leakage of common area vs residential units
- Measure leakage and investigate paths what is needed for tighter buildings/units?
- Modelling
  - Relate unit leakage to air infiltration and inter-unit airflow rates
  - Impact of interior leakage
  - Effectiveness of exhaust, supply and balanced ventilation
  - Impact of common area leakage on building energy use



#### Helen Townsend, Project Manager Ecotope



#### CONTACT

Robert Davis, Principal Investigator Ecotope, Inc. bdavis@ecotope.com 206-786-4709 Helen Townsend, Project Manager Ecotope, Inc. helen@ecotope.com 206-596-4719



# QUESTIONS

#### THANK YOU!

• Building Energy Codes Program

www.energycodes.gov/training

• Multifamily Resources are available at

https://www.energycodes.gov/compliance/energy-code-field-studies





#### NECC SEMINAR SERIES

Catch the entire lineup of sessions weekly—Thursdays @ 1p ET:

- 10/01: Kickoff to the Series
- 10/08: Electronic Permitting
- 10/15: HVAC for Low-Load Homes
- 10/22: Performance-Based Compliance •
- 10/29: 2021 IECC Commercial
- 11/05: Remote and Virtual Inspections
- > Learn more: <u>energycodes.gov/2020-building-energy-code-webinar-series</u>

- 11/12: New for ASHRAE Standard 90.1
- 11/19: 2021 IECC Residential
- 12/03: Advanced Technology and Codes
- 12/10: Policies for EE + Resilience
- 12/17: Field Studies in the NW Region