

Building Energy Codes Delivering Resilience and Life Safety

Joseph W. Sollod, M.S., Innovation Associate

Governments Have Committed

CLIMATE

USDN urban sustainability directors network

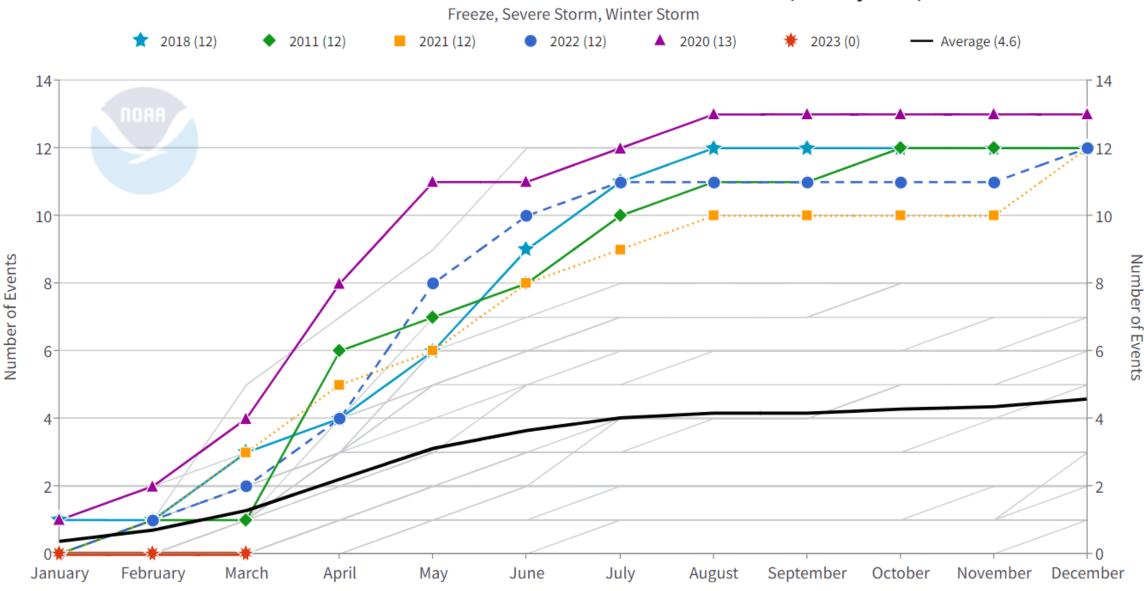
A JOINT PROJECT of NRDC

The U.S. Administration has set **zero-energy building goals** of 2030 for new construction and 2050 for all buildings.*

ACCEPTANCE ON BEHALF OF THE UNITED STATES OF AMERICA

I, Joseph R. Biden Jr., President of the United States of America, having seen and considered the Paris Agreement, done at Paris on December 12, 2015, do hereby accept the said Agreement and every article and clause thereof on behalf of the United States of America.

Done at Washington this 20th day of January, 2021.

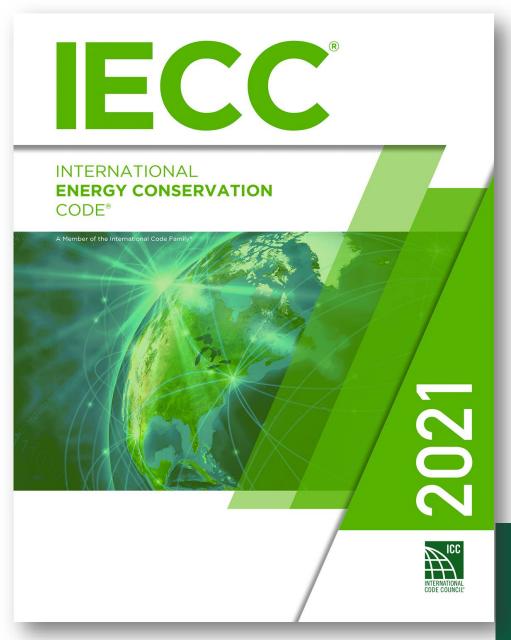

2021 IECC

JOSEPH R. BIDEN JR.

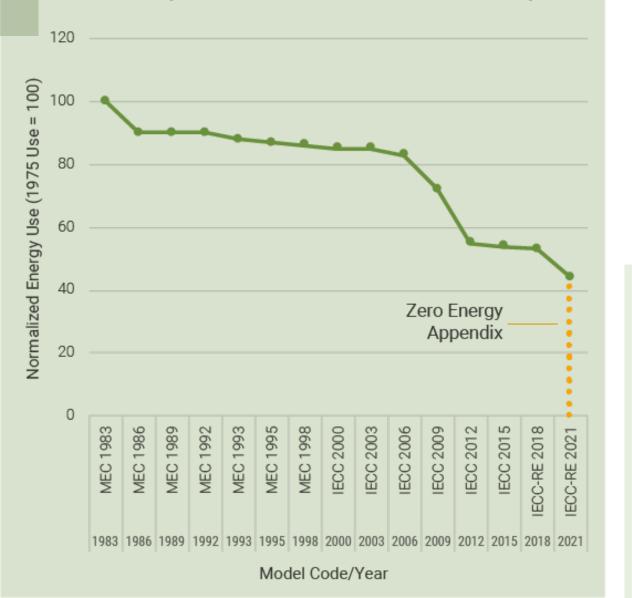
Pledge, Compact, Commitment, or Initiative	Number of Participating US Local Governments
Climate Mayors	407
We are Still In	307
Ready for 100	148
Under2MOU	26
Bloomberg American Cities Climate Challenge	25
Rockefeller 100 Resilient Cities	24
2030 Districts	21
DOE Zero Energy Schools Accelerator	14
DOE Energy Accelerator	11
DOE Zero Energy Districts Accelerator	4

Extreme Weather Events are Trending

1980-2023 United States Billion-Dollar Disaster Event Count (CPI-Adjusted)

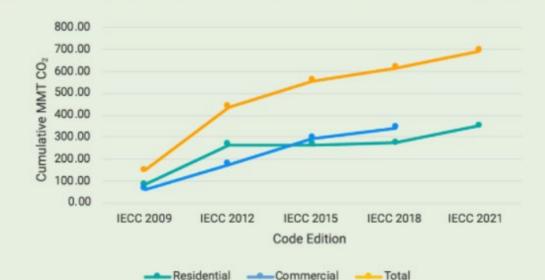

Updated: April 10, 2023

Event statistics are added according to the date on which they ended. Powered by **ZingChart**


Governments cannot meet their GHG reduction goals without having **building energy codes that align** with those goals.

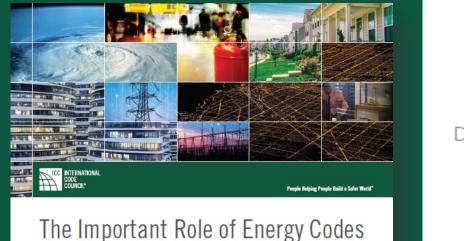
Improvement in Energy Use for Residential Model Energy Codes (1983–2021)

Courtesy of Pacific Northwest National Laboratory



The 2021 edition of the IECC represents an approximately **40 percent improvement** over the 2006 edition.*

*U.S. Department of Energy, Residential Determinations (2006-2021)



Cumulative CO₂ Savings from Each Edition of the IECC (2009-2021)

Energy Codes are a Resilience Strategy

in Achieving Resilience

Second in a series

https://www.iccsafe.org/wp-content/uploads/19-18078 GR ANCR IECC Resilience White Paper BRO Final midres.pdf

Resilience Benefits of Energy Efficiency

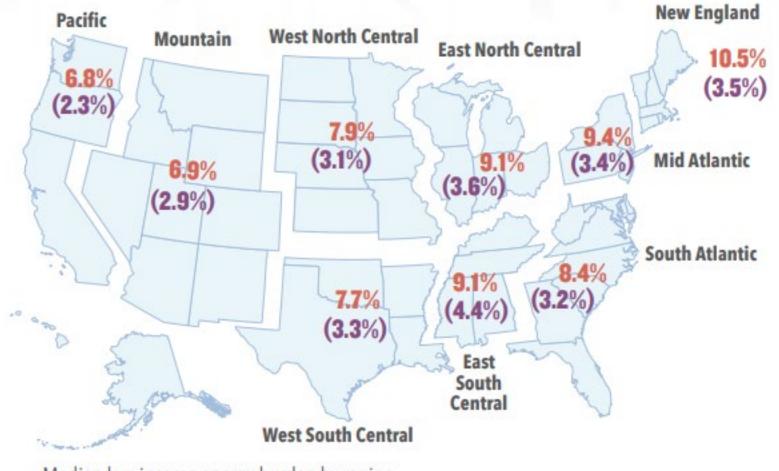

Benefit type	Energy efficiency outcome	Resilience benefit					
Emergency response and recovery	Reduced electric demand	Increased reliability during times of stress on electric system and increased ability to respond to system emergencies					
	Backup power supply from combined heat and power (CHP) and microgrids	Ability to maintain energy supply during emergency or disruption					
	Efficient buildings that maintain temperatures	Residents can shelter in place as long as buildings structural integrity is maintained.					
	Multiple modes of transportation and efficient vehicles	Several travel options that can be used during evacuations and disruptions					
Social and economic	Local economic resources may stay in the community	Stronger local economy that is less susceptible to hazards and disruptions					
	Reduced exposure to energy price volatility	Economy is better positioned to manage energy price increases, and households and businesses are better able to plan for future.					
	Reduced spending on energy	Ability to spend income on other needs, increasing disposable income (especially important for low- income families)					
	Improved indoor air quality and emission of fewer local pollutants	Fewer public health stressors					
Climate mitigation and adaptation	Reduced greenhouse gas emissions from power sector	Mitigation of climate change					
	Cost-effective efficiency investments	More leeway to maximize investment in resilient redundancy measures, including adaptation measures					

Figure 6. Resilience Benefits of Energy Efficiency (Ribiero et.al. 2015)

Energy Burdens & Low-Income Households

FIGURE 3. Median low-income (< 200% FPL) energy burdens by region (red) compared to median energy burdens by region (purple)

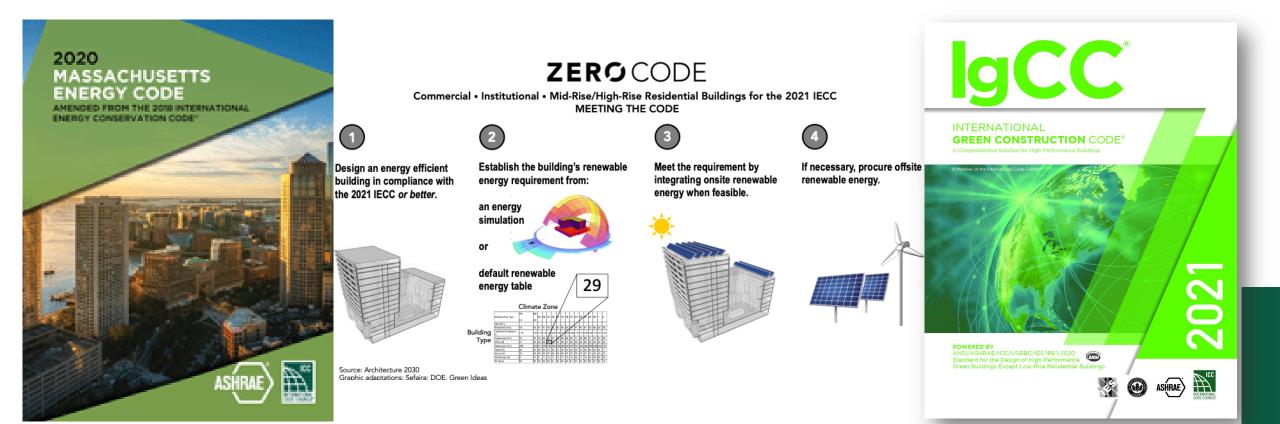
How High Are Household Energy Burdens?

An Assessment of National and Metropolitan Energy Burden across the United States

Ariel Drehobl, Lauren Ross, and Roxana Ayala

Median low-income energy burden by region

Median energy burden by region


https://www.aceee.org/research-report/u2006

Stretch Energy Codes

- "Above" or "Reach" Codes
- Policy Tool to Enhance Energy Efficiency
- 2020 Massachusetts Energy Codes

- International Energy Conservation Code
- International Green Construction Code
 - ASHRAE, USGBC, IES Collaboration

Federal Assistance for Building Energy Codes

- Infrastructure Investment and Jobs Act (IIJA)
 - Section 40511: Cost-effective Codes Implementation for Efficiency & Resilience
 - \$225M for the Resilient and Efficient Codes Implementation (RECI) program
 - State Energy Program (SEP) \$500 million
 - Energy Efficiency and Conservation Block Grant (EECBG) \$550 million
- Inflation Reduction Act (IRA)
 - Section 50131: Assistance for Latest and Zero Building Energy Code Adoption
 - \$330M supporting adoption of the latest model energy codes
 - 2021 IECC or ASHRAE Standard 90.1-2019
 - \$670M supporting adoption of zero energy codes
 - Zero energy provisions of the 2021 IECC (or equivalent stretch code)

Visit <u>www.iccsafe.org/federalgrants</u> for more information

Supporting Community Resilience

Building Safety Month 2023 "It Starts with YOU!"

Buildingsafetymonth.org

Joseph W. Sollod, M.S. Innovation Associate International Code Council Staff Member, Alliance for National & Community Resilience 202-370-1800x6253 | 609-240-2166 jsollod@iccsafe.org • ANCR@resilientalliance.org iccsafe.org • resilientalliance.org

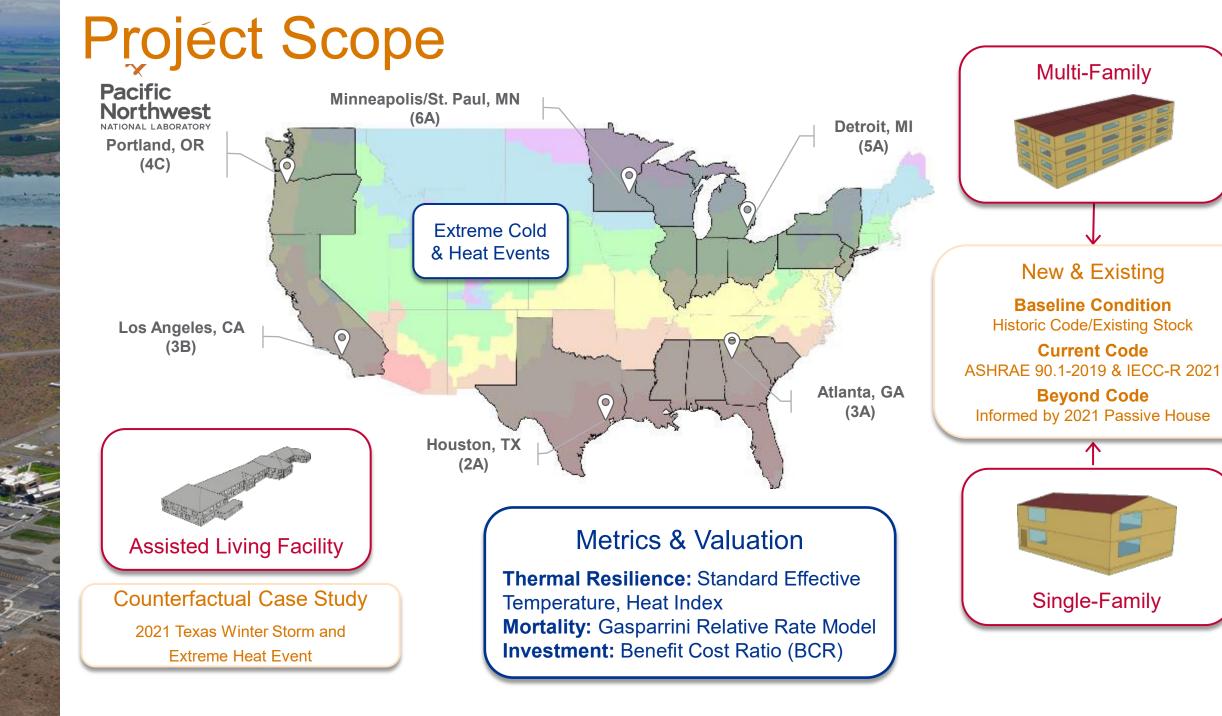
2023 National Energy Codes Conference

Valuing Energy Efficiency for Energy Resilience

Ellen Franconi, Pacific Northwest National Laboratory

May 4, 2023

PNNL is operated by Battelle for the U.S. Department of Energy



Valuation of Energy Efficiency for Energy Resilience

A collaborative **PNNL**, **NREL**, **and LBNL** project guided by a **technical advisory group** and funded by **DOE**

Project objective: develop a **standardized** methodology to **quantitatively** assess how building efficiency impacts energy resilience.

	PNNL	NREL	LBNL	DOE	
Team Leads	Ellen Franconi Overall PI and PM	Eliza Hotchkiss Lab PM	Tianzhen Hong Lab PM	Michael Reiner Christopher	
Building Types	New single family New and existing multifamily	Existing single family	Nursing home case study	Perry Jeremy Williams	
Modeling Platform	Code modeling framework	ResStock	EnergyPlus		
Resilience Analysis Method Development	Extreme event excess death analysis	Extreme event- power outage probability	Extreme weather event characterization		

Pacific Northwest

Hazard Risk Analysis

- Extreme temperature event identification
- Power outage data
- Extreme event weather file creation

Coincident probability

Exposure Analysis

- Baseline and efficiency packages
- Building energy models
- Building simulation analysis

Indoor conditions effect on habitability

Damage Analysis

- Susceptibility factors
- Loss data or fragility models
- Damage and loss

Property damage and excess mortality

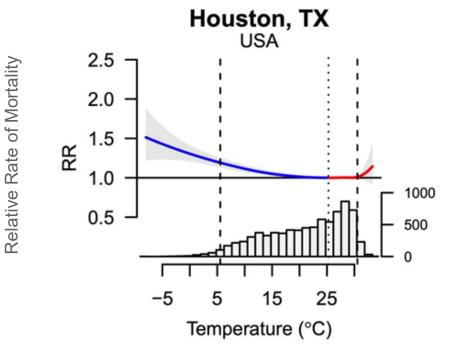
Mitigation Valuation

- Valuation of loss
- Mitigation costs
- Annualized impacts
- Net present value analysis

Return on efficiency investment

Exposure Analysis

Pacific Northwest What is the fluctuation in indoor comfort conditions extreme temperature events? How does it affect habitability?



Area outlines illustrate the 5th and 95th percentiles of the building samples.

How does extreme heat and cold impact mortality rate?

Relative rate of death curves as a function of **outdoor temperature** published by Gasparrini available for over 130 U.S. locations

Mean Daily Outdoor Air Temperature (C)

Notes: Vertical dashed lines indicate the temperature at 2.5th percentile and 97.5th percentile. The vertical dotted line indicates the temperature at which the relative rate of death is one or the temperature at which deaths are not attributed to severe temperatures

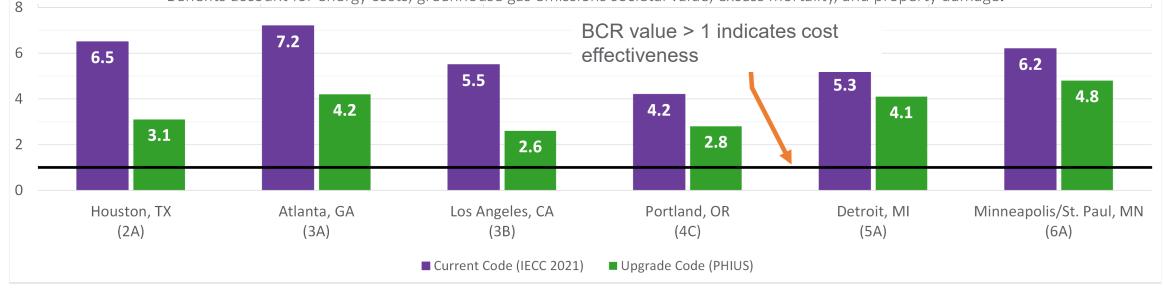
Example Exposure and Damage Results

Pacific Northwest

		SET [Degree Ho	ours [*]	Days of Safety		Days of Safety from Basecase		Lives Saved per Event		Improvement from Basecase		
Location (Climate Zone)	Event	Existing Stock	Current Code IECC 2021	Beyond Code PHIUS	Existing Stock	Current Code IECC 2021	Beyond Code PHIUS	Current Code IECC 2021	Beyond Code PHIUS	Current Code IECC 2021	Beyond Code PHIUS	Current Code IECC 2021	Beyond Code PHIUS
Houston, TX	Long Cold	749	222	-	3.8	6.9	7	82%	85%	20.0	43.2	32%	69%
(2A)	Long Heat	600	141	-	4.0	7	7	75%	75%	42.1	50.2	80%	96%
Atlanta, GA	Long Cold	2,558	1,610	200	1.4	2.3	7	64%	409%	3.6	8.7	21%	52%
(3A)	Long Heat	438	59	-	2.9	7	7	140%	140%	0.9	5.9	14%	93%
Los Angeles, CA	Long Cold	87	-	-	7	7	7	-	-	5.2	5.4	25%	25%
(3B)	Long Heat	100	-	-	7	7	7	-	-	126.9	202.8	53%	84%
Portland, OR	Long Cold	2,963	1,849	237	1.1	2.4	6.8	123%	523%	3.2	8.6	22%	58%
(4C)	Long Heat	371	319	-	4.7	5.5	7	16%	49%	-2.6	24.5	-8%	71%
Detroit, MI	Long Cold	4,248	3,020	1,778	0.9	1.7	2.4	82%	159%	5.1	10.8	14%	30%
(5A)	Long Heat	223	53	0.3	6.8	7	7	2%	2%	6.9	26.0	9%	35%
Minneapolis/	Long Cold	5,397	3,699	2,190	0.6	1.2	1.8	100%	214%	7.3	14.0	19%	36%
St. Paul, MN	Long Heat	215	66	5	7	7	7	-	-	4.4	14.7	8%	27%

* SET Degree Hours are cumulative SET hourly values > 86 F for extreme heat and < 54 F during extreme cold. The values in the table are based on a 7-day period. The threshold for habitability is 216, which is in accordance with the USGBC LEED resilience credit.

Example Benefit Cost Ratio Results


Pacific Northwest

What is the return on building efficiency investment with annual energy cost saving, societal value of reduced CO2e emissions, and annualized excess deaths?

New Single-Family Benefit Cost Ratio (BCR)

Efficiency measure costs and benefits relative to IECC-R 2006.

Benefits account for energy costs, greenhouse gas emissions societal value, excess mortality, and property damage.

Methodology Robustness Assessment

Pacific Northwest

Category	Component	Robustness
1. Hazard Risk Identification	Develop weather data files representative of extreme temperature events	
	Develop coincident probability risk factors to annualize event losses and benefits	
2. Exposure Analysis	Assess relative impact of efficiency measures on habitability	
E1	Determine indoor habitability conditions exceeding thresholds	
3. Vulnerability Assessment	Evaluate occupant exposure effect on mortality, health, and well-being	
(7)	Evaluate property exposure effect on active building state and systems	FUTURE
4. Mitigation Valuation	Quantify the monetary value of resilience	
	Inform resilience planning efforts	

Key Trends and Take-Aways

• For most single-family cases evaluated, increased efficiency improved thermal resilience and extended the days of safety during extreme temperature events.

- Locations having the highest risk of extreme temperature-power outage events, realized the highest resilience benefit from the efficiency investment.
- Increasing efficiency at the time of construction provides a good investment opportunity for addressing resilience.
- For more details, see the final report available this summer
 - Enhancing Resilience in Buildings Through Energy Efficiency, PNNL-SA-177117
 - <u>https://www.energycodes.gov/energy-resilience</u>

Thank you

Distributed Energy Resources (DER) & Resilience

National Energy Codes Conference May 4, 2023 Kristen Hagerty

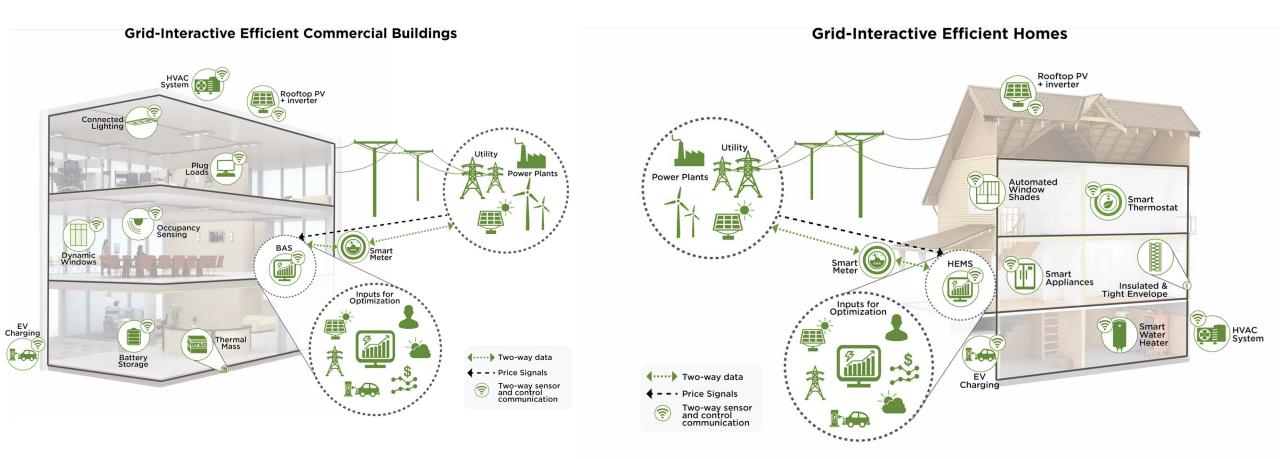
IREC builds the foundation for rapid adoption of clean energy and energy efficiency to benefit people, the economy, and our planet.

$\textbf{Efficiency} \rightarrow \textbf{Resilience}$

"Energy-efficient buildings lower power demand, reducing the stresses to the grid."

"Grid-enabled technologies, such as smart thermostats and heat pump water heaters, can **adjust load consumption** to support timesensitive peak demand periods."

"Following disaster, certain efficiency strategies, such as mechanical ventilation systems, can also help the building rebound by ensuring adequate access to fresh air and **reducing the potential for mold growth and other lasting moisture**


Enhancing Resilience in Buildings Through Energy Efficiency

December 2022

Department of Energy Jeremy Williams, Christopher Perry, and Michael Reiner Pacific Northwest National Laboratory Ellen Franconi, Mark Weimar, Luke Troup, Yunyang Ye, Chitra Nambiar, and Jeremy Lerond National Renewable Energy Laboratory Eliza Hotchkiss, Jordan Cox, Sean Ericson, Eric Wilson, Philip White, Conor Dennehy, Jordan Burns, Jeff Maguire, and Robin Burton Lawrence Berkeley National Laboratory Tianzhen Hong, Lingian Sheng, and Kaiyu Sun

Distributed Energy Resources \rightarrow **Resilience**

Images: Guidehouse

Opportunity: Education about Safety & Efficiency Codes

Insulation

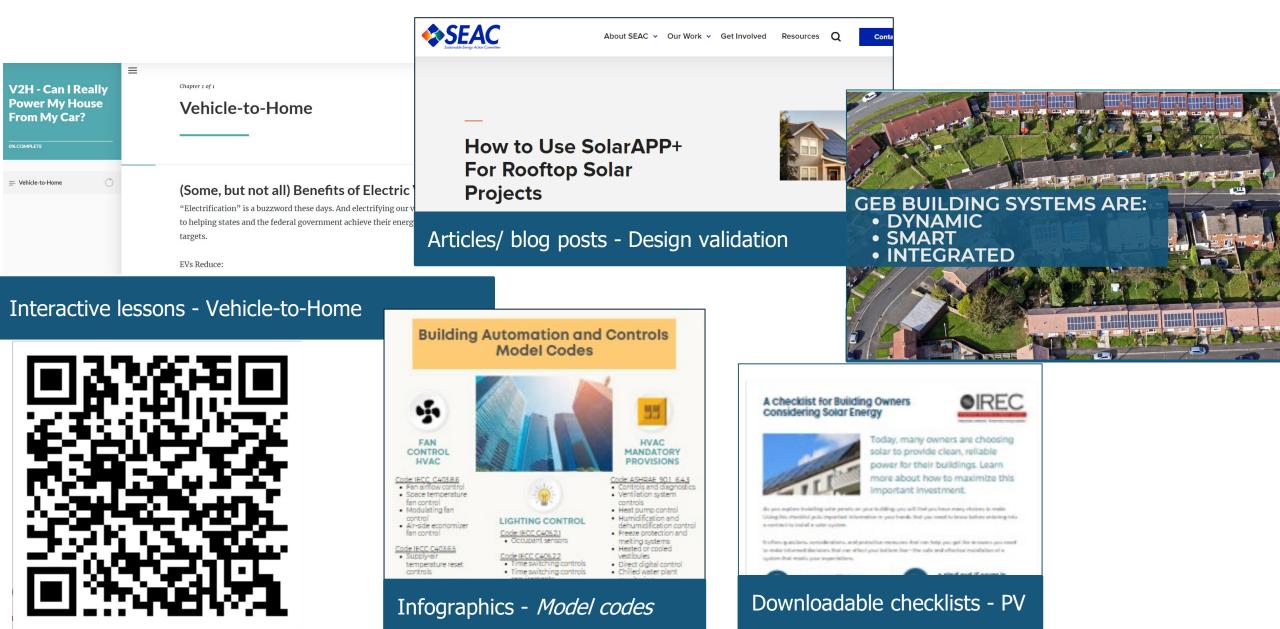
- Efficient electric heating and cooling
- Wiring for electric vehicle charging
- Energy storage

- Does insulation and wall assembly present new/ different fire risks?
- How well does it work in all climates?
- Can it put power back to the utility grid?
- How far apart can the units be?

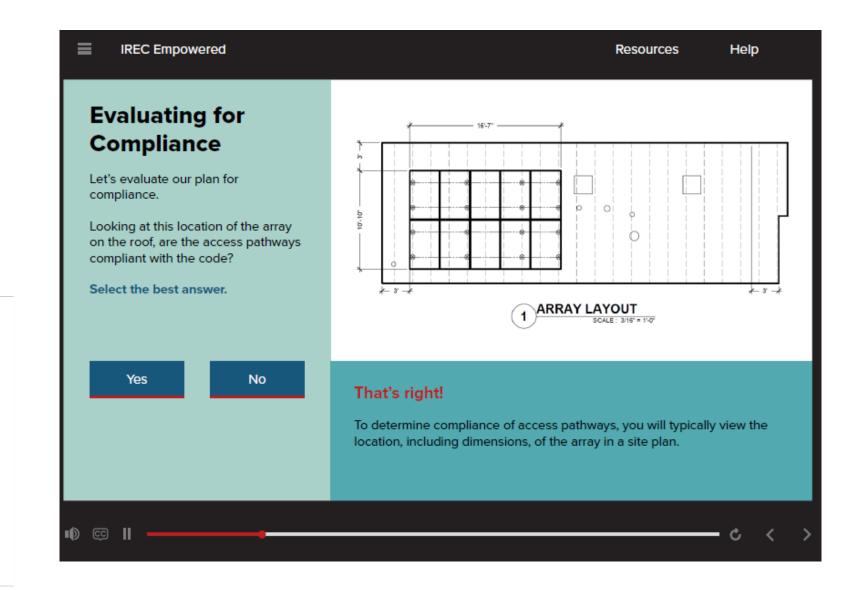
Opportunity: Education

Education about the safety and resilience support of DERs can extend the message that the energy code is life-safety related.

- Code development
- Adoption
- Implementation
- Enforcement


Target Audience for Safe DER Building Integration

- Code officials
- Fire marshals
- First responders
- Building managers and operators
- Installers/ contractors
- Architects
- Designers/ engineers



Educational Resources: CleanEnergyClearinghouse.org

Job-Focused Training: CleanEnergyTraining.org

Distributed Energy Resources & Resilience

- Efficiency (reducing needed load) and DERs (generation and load shifting) can increase both building resilience and grid resilience.
- Communities with more resilient structures and infrastructure can recover from and more successful adapt to adverse events.
- Structures built to the latest energy codes can support a more resilient energy grid.
- Education about the safe and code compliant installation of DERs that meet energy code and support resilience is critical to energy code adoption.

Suggestions welcome

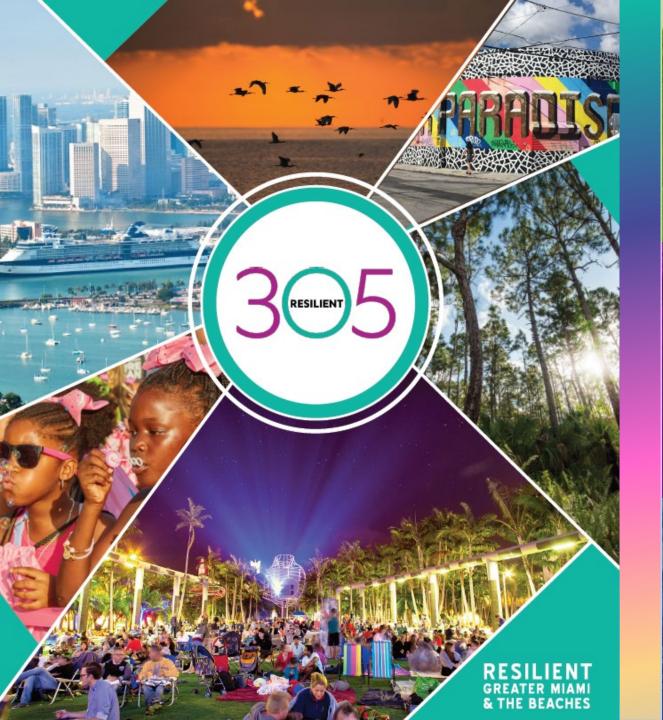
Kristen Hagerty kristenh@irecusa.org

Interstate Renewable Energy Council Kristen Hagerty, Senior Director of Workforce Development kristenh@irecusa.org

Presentation template by SlidesCarnival

Building a more Resilient Miami-Dade County

Dr. Patricia Gomez


Director of Energy and Deputy Chief Resilience Officer, Miami-Dade County

DOE Energy Codes Conference How Valuing Resilience Demonstrates Energy Codes Benefits for Grid Stability and Life Safety

May 4, 2023

Office of Resilience in the Office of the Mayor

PLACES

Through our "Places" actions, we aim to address placebased challenges by enhancing our climate resilience through design and planning for the future: creating, connecting, and improving mobility and housing options; and safeguarding our ecosystems.

19 IN PROGRES

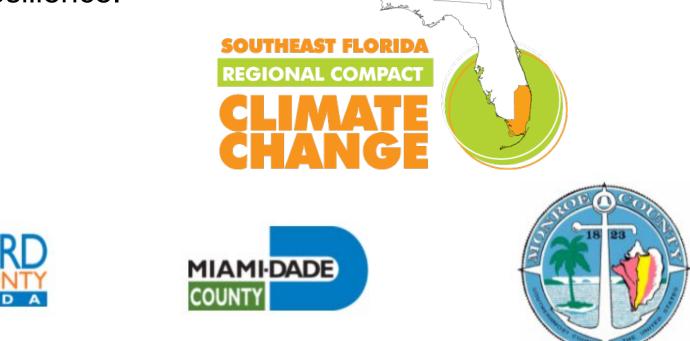
PEOPLE

Through our "People" actions, we aim to improve the lives of our residents every day, whether sunny or stormy, by supporting job and wealth creation: addressing specific health needs for the most vulnerable among us; and preparing and empowering neighborhoods and networks to anticipate and respond to disruptions, both large and small. IN PROGRESS

PATHWAYS

Through our "Pathways" actions, we aim to build the connections, collaborations, and committed leadership needed to change the status quo, enabling GM&B to become a global leader in resilience. We can achieve this by setting common goals and committing to actions that bring together governments, businesses, and academic and community organizations.

15 IN PROGRESS


3 NOT STARTED

Connected Strategies

Regional collaboration to meet regional challenges

- Miami-Dade County works closely with our local and regional partners through the Southeast Florida Regional Climate Change Compact to address the full range of climate change causes and outcomes.
 - <u>Regional Climate Action Plan (RCAP)</u> the Compact's guiding tool for coordinated climate action in Southeast Florida to reduce greenhouse gas emissions and build climate resilience.

Communitywide Sources of Emissions

Buildings and Energy 41%

- Electricity 61%
- Other Fuels 31%
- Natural Gas 7%

Transportation and Land Use 55%

- Air Travel 45%
- Ground Gasoline 40%
- Ground Diesel 15%

Water and Waste 4%

- Landfilled Waste 53%
- Wastewater Energy 25%
- Incinerated Waste 12%
- Other 10%

Climate Action Strategy Targets

Emission reductions from 2019 levels

Net Zero by 2050

Miami-Dade County Mayor Daniella Levine Cava created a Director of Energy for Miami-Dade County in March of 2023.

The Director of Energy will:

- Help develop and execute energy resilience priorities.
- Strategically plan and steer the County toward carbon neutrality.
- Lead policy and coordination, contracting, administration, management, and reporting of all energy related services and functions of Miami-Dade County.
- Serve as the primary point of contact with Florida Power & Light (FPL) and other energy-related utilities and vendors

Energy Highlights in Miami-Dade County Gibson Plaza Cool Roof + Solar

Energy Highlights in Miami-Dade County North Dade Library Solar Installation

COMMUNITY HIGHLIGHT: Miami-Dade lights up County operations with solar

In the Summer of 2022, installation of largescale solar installations began at three buildings, including the North Dade Regional Library, South Dade Regional Library, and the Metrowest Detention Center. The County's roof-top solar pilot project will produce a combined total of 1.4

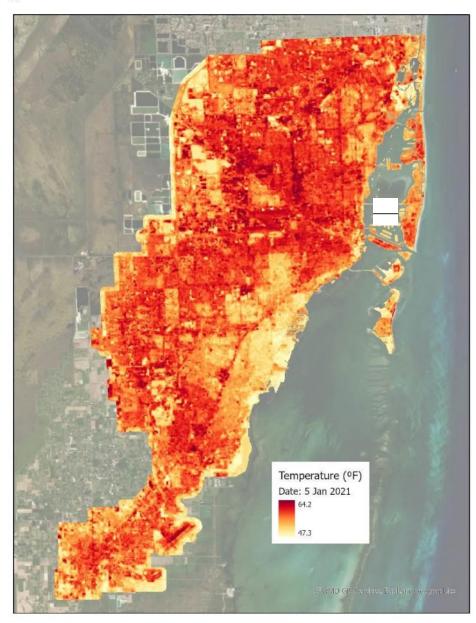
The first large-scale solar installation on a county owned building at the North Dade Regional Library.

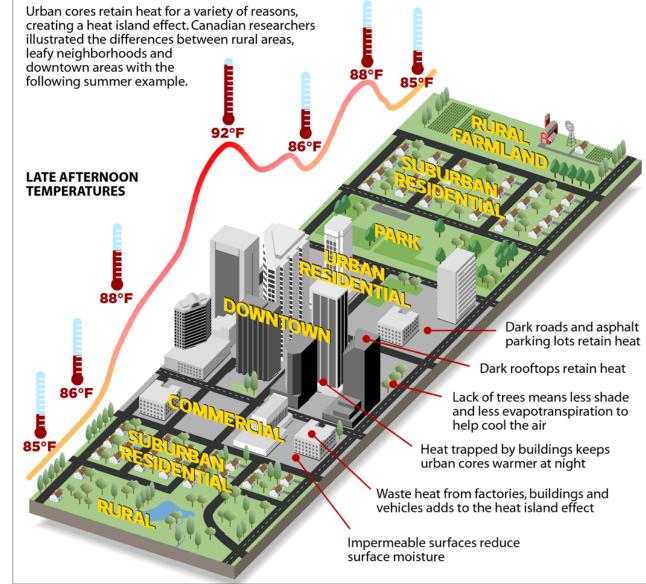
Energy Highlights in Miami-Dade County Autocase Triple Bottom Line Analysis of Proposed Cool Roof Policy

Category	Stakeholder	Impact	Net Present Value	\$ NPV /				
			(NPV)	ft²	Figure 1: Net Present Value of Economic Impacts - Cool Roof SR: 5% to SR: 63% over 25 years (\$2021) ¹			
Financial	Owner	Upfront Capital Costs	\$0	\$0.00	\$150,000			
Financial	Owner	Financial Savings from Electricity	\$2,090	\$0.42				
Social	Community	Health - Heat Island Effect	\$20,700	\$4.14			\$132,900	
Environmental	Community	Carbon Emission Reductions	\$550	\$0.11	\$100,000		_	
Environmental	Community	Air Pollution Reductions	\$280	\$0.06				
Financial Benefits			\$2,090	\$0.42	\$50,000			
Social Benefits			\$20,700	\$4.14				
Environmental Benefits			\$830	\$0.17				\$6,000
					\$0 ——	\$15,200		\$0,000
Triple Bottom Line Lifetime Benefits			\$23,620	\$4.73	¢0	Financial Benefits	Social Benefits	Environmental Benefits

Extreme Heat

- Heat is the leading weather-related killer in the United States
- High heat and humidity can lead to heat-related illness, including heat cramps, heat exhaustion and heat stroke
- Most HRIs and deaths are preventable
- High risk groups experience a disproportionate amount of health impacts
- Marginalized communities, the elderly, young children, pregnant women and outdoor workers are more vulnerable to heat related illnesses and deaths
- Extreme heat conditions are increasing due to climate change and urban development.



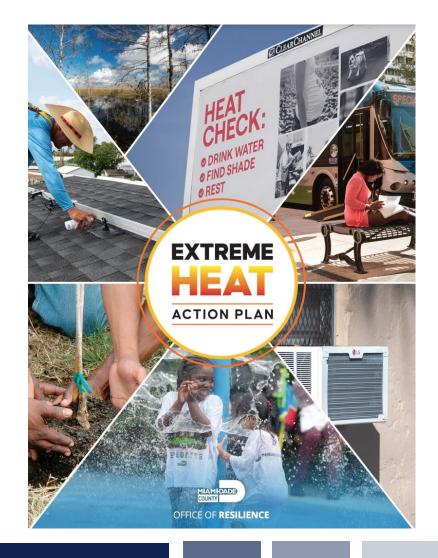

Background: Currently in Miami

Risks to human health and wellbeing are INCREASING

Urban Heat Island Effect

SOURCE: D.S. Lemmen and F.J. Warren, Climate Change Impacts and Adaptation

PAUL HORN / InsideClimate News


Extreme Heat Action Plan

Goal 1: Inform, Prepare and Protect People

Goal 2: Cool our Homes and Emergency Facilities

Goal 3: Cool our Neighborhoods

Goal 1: Inform, Prepare and Protect People

Foster healthy and resilient communities by bolstering outreach and education efforts, improving extreme heat warning systems and emergency protocols, protecting outdoor workers and building the capacity of healthcare practitioners to identify and respond to heat vulnerability and illness in their patients.

- 1. Build on the Success of the Heat Season Campaign
- 2. Enhance Messaging and Protocols
- 3. Engage and Support Employers of Outdoor Workers
- 4. Seek Worker Protections at all Levels of Government
- 5. Engage and Prepare Healthcare Practitioners
- 6. Leverage Urban Heat Research Group for Continued Learning

Goal 2: Cool our Homes and Emergency Facilities

Improve access to efficient and reliable cooling in homes and to a place to cool off in the event of a power outage.

- 7. Seek Increased Support for Efficiency and Cooling Upgrades
- 8. Advocate for Heat Safe and Affordable Housing Policies
- 9. Improve Coordination and Expand Outreach on Energy Efficiency
- **10. Invest in Energy Resilience at Evacuation Shelters**
- **11. Ensure Compliance with Assisted Living/Nursing Home Generator Rule**
- **12. Incorporate Extreme Heat in Countywide Resilience Hub Plan**

Goal 3: Cool our Neighborhoods

Reduce the excessive heat burden in urban areas by expanding the tree canopy and vegetation, improving access to water features and shade structures, and cooling our surfaces.

- 13. Create a Bold Tree Plan
- **14. Cool our Commutes**
- **15. Cool Our Schools**
- **16. Expand Access to Water and Shade**
- **17. Plant and Protect Trees on County Land**
- **18. Pilot and Scale Cool Pavements**
- **19. Ramp up Engagement and Citizen Science**

Thank you!

Contact the Office of Resilience

We are always available to discuss ideas and hear concerns.

Email: resilience@miamidade.gov

Dr. Patricia Gomez Director of Energy and Deputy Chief Resilience Officer Miami-Dade County Patricia.Gomez@miamidade.gov

Sign up for our newsletter: miamidade.gov/resilience