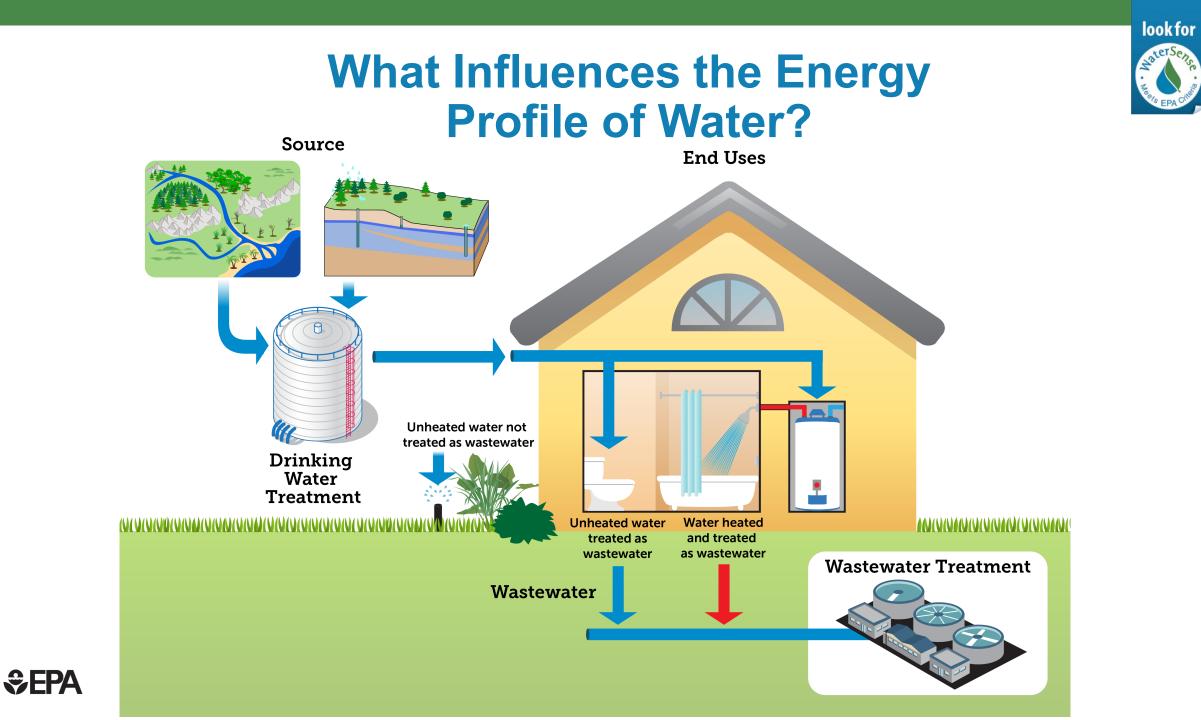

Saving Water and Saving Energy in Growing Communities

Jonah Schein WaterSense Program


Water and Energy

look for

- Every gallon of water has an energy "footprint"
- Moving, treating, and heating water uses energy
- Water related energy uses account for more than 500 tWh/year
 - More than 14% of total consumption for 2020

Cadanera Case Study

lookfor

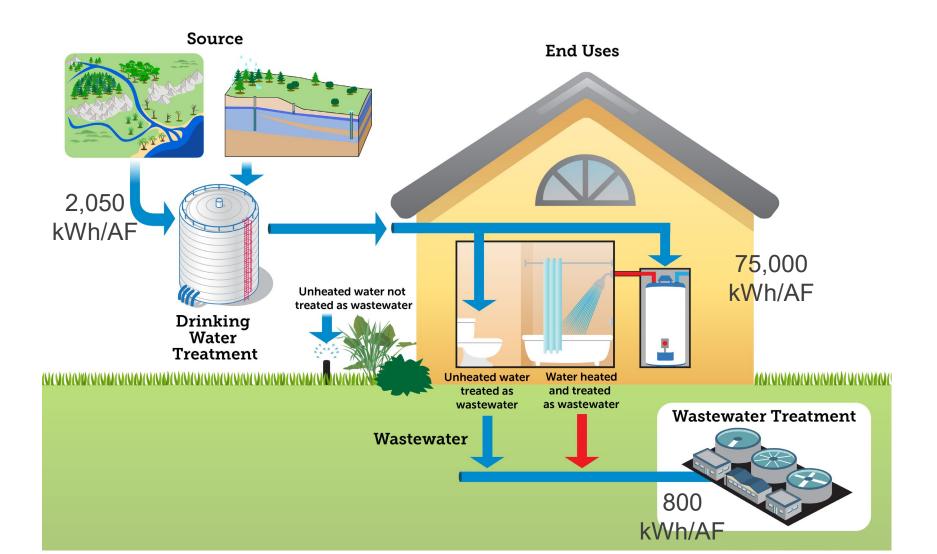
45 WaterSense labeled homes in Southern California

Local Water Use Profile

Energy used for various sources of water used locally (kWh/AF)

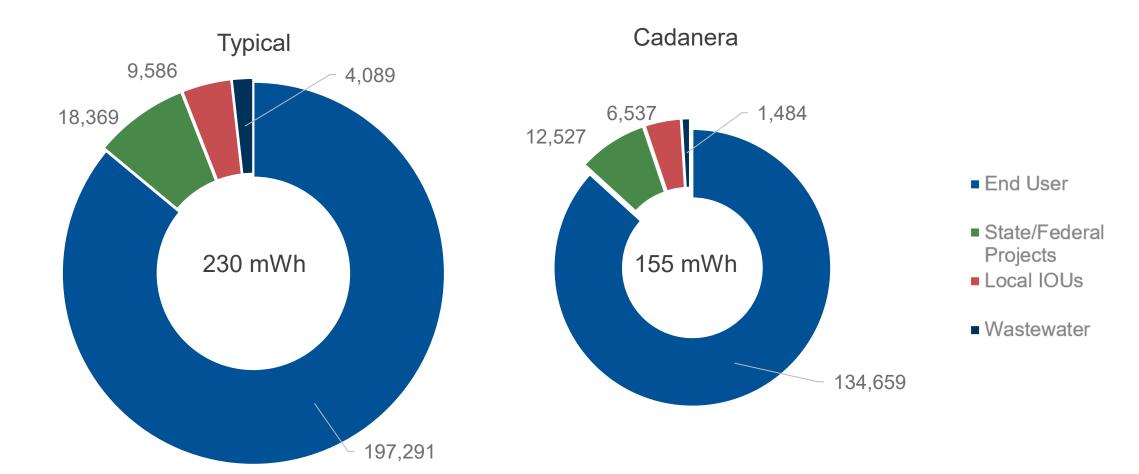
Source	Extraction/ Conveyance	Treatment	Distribution	Total Energy
Groundwater	576	3	163	742
Recycled	0	521	163	684
Colorado River Aqueduct	2,500	144	163	2,807
State Water Project	3,214	144	163	3,521

Local Water Use Profile


Source	Volume (AF/year)	Energy (total kWh/AF Delivered)
Groundwater	19,146	742
Recycled	743	684
Colorado River Aqueduct	9,831	2,807
State Water Project	12,823	3,521
Total	42,500 AF/Year	2,050 Average kWh/AF Delivered

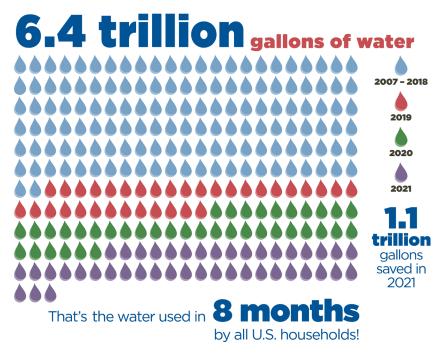
A conservative estimate for the national average is 674 kWh/AF

What Influences the Energy Profile of Water?


look for

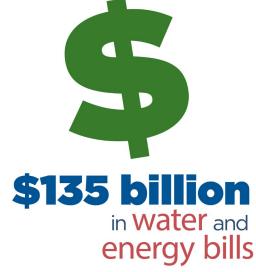
\$EPA

Annual Energy Used for Water by Cadanera

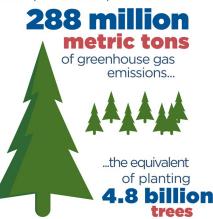

WaterSense Through 2021

WaterSense has helped reduce

pump, treat, and heat water by


the amount of energy needed to

WaterSense partners helped save



754 billion kilowatt hours, enough to supply a year's worth of power to more than 70 million homes...

WaterSense partners helped consumers save

WaterSense partners helped eliminate

WaterSense Labeled Products

More than **43,000** product models have earned the label. Water factors are included in many **ENERGY STAR** certified products.

Flushing Urinals

Showerheads

Lavatory Faucets

Flushometer Valve Toilets

Tank-Type Toilets

Irrigation Controllers

Spray Sprinkler Bodies

WaterSense labeled homes

- Provides a whole-house/building approach to water efficiency
- Available for single and multifamily, new and existing construction
 - Most activity is in new construction
- Third-party certified to use at least 30% less water than typical new construction

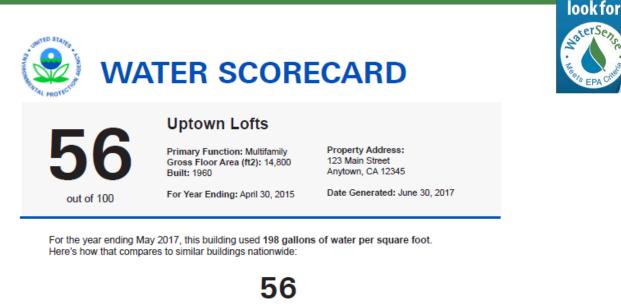
we build

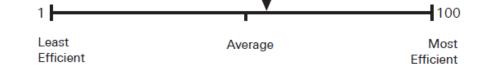
ienia enia

Naters.

Neets

ENERGY STAR® Portfolio Manager®


Add a Property			as of 07/20/2017 10	24 AM EDT) C	Search h	/ ID or Name
	EP	A Sample Buildings Demo				
Course Fill F	Add	Edit/Delete Groups	Add/Edit/Del		Refre	sh Metrics
Source EUI Trend (kBtu/ft²)		Name -	Energy Current Date *	ENERGY STAR Score	Site EUI (kBtu/ft²) •	Source EUI (kBtu/ft ^a)
400		EPA Sample K-12 School 5711767	12/31/2016	79	53.1	108.9
200		EPA Sample Library 5711765	12/31/2016	NA	100.1	234.6
0 2006 2008 2010 2012 2014 2016		EPA Sample Mixed Use 5711741	12/31/2016	51	98.0	251.7
		EPA Sample Office 5837710	12/31/2016	1	227.2	652.4
Manage Portfolio		EPA Sample Office_DefaultValues 5912952	12/31/2016	46	104.4	268.8
Transfer ownership of a property that you manage to another Portfolio Manager user.		EPA Sample Office_Vacant Demo 5913030	12/31/2016	22	148.8	383.1
Upload and/or update multiple properties at once using an Excel spreadsheet if you are a pro. This can	•	EPA Sample University 5711768	12/31/2016	NA	74.4	172.8
be done to create new properties, add use details, create meters and add		Test Campus 3611609	08/31/2007	NA	188.4	417.4
meter consumption data. Download your entire portfolio to Excel or create a <u>custom download</u> . Set a nortfolio haseline and/or target to	Pro	First Previo	ous Page 1 of 5	Next Last 100 •	i to view.) 👲 D	View 1 - 100 ownload Data


Who Uses Portfolio Manager?

- More than half a million properties track energy use
- 25% of the commercial building stock in the U.S.
- More than half of Fortune 100 companies
- Half of the largest healthcare organizations
- Numerous municipalities that require reporting of energy and/or water through Portfolio Manager

EPA Water Score for Multifamily Buildings

- For existing multifamily buildings
- Provides a 1-100 score analogous to an ENERGY STAR score
- Supported through ENERGY STAR Portfolio Manager
- Creates a meaningful peer comparison

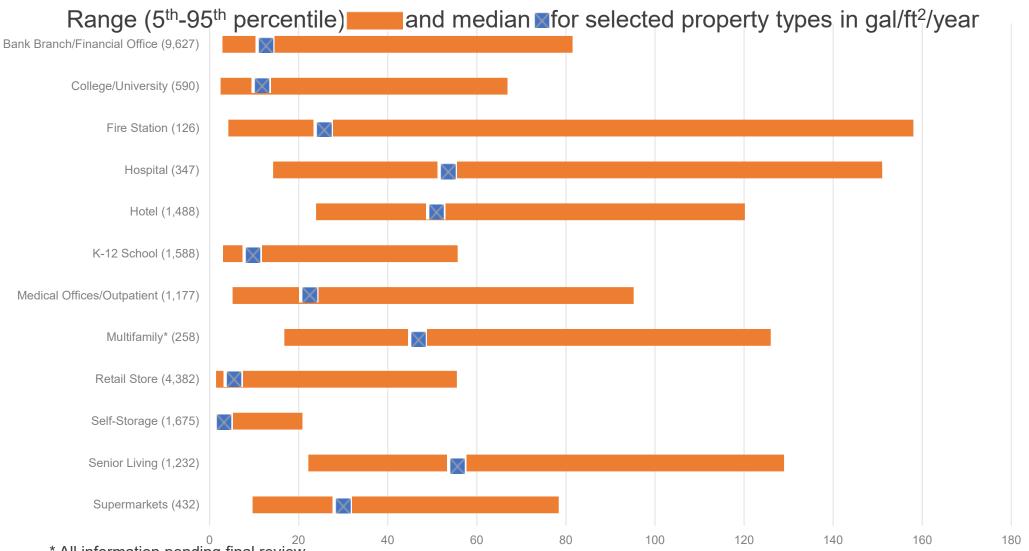
About this Score

The U.S. Environmental Protection Agency's (EPA) Water Score is generated by the ENERGY STAR* Portfolio Manager* tool and supported by WaterSense. The Score offers a 1 - 100 measurement of how efficiently this property uses water, compared to similar properties nationwide, when normalized for climate and operational characteristics. Learn more at www.epa.gov/WaterSense.

Signature

This scorecard was generated from EPA's ENERGY STAR Portfolio Manager tool.

VERIFICIATION (Optional)


I, _____, verify that the information regarding water use and property use details is true and correct to the best of my knowledge.

Harnessing Portfolio Manager's Data

lookfor

ters

* All information pending final review

SEPA

** The data above comes from ENERGY STAR Portfolio Manager entered by individual account holders or their service providers and may not have⁴been verified by EPA. It also may not be representative of the building stock in the United States as a whole, or any individual location.

WaterSense Resources

- Water use information by facility type
- Best management practices
- Water-saving tips
- Assessment tools
- Worksheets and checklists
- Live and recorded training webinars
- Case studies and more!

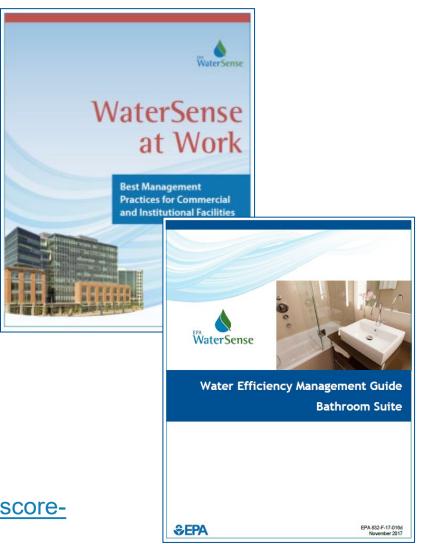
www.epa.gov/watersense/tools-ci-facilities

Best Management Practices

<u>WaterSense at Work</u>: best practices for all buildings

Water management planning

Water use monitoring and user education


Sanitary fixtures, kitchen equipment

Outdoor water use, Mechanical systems

Lab & medical equipment

Onsite alternative sources of water

Multi-family Guides and Assessment Worksheets

www.epa.gov/watersense/water-scoremultifamily-housing

Contact Us

WaterSense

www.epa.gov/watersense

www.facebook.com/epawatersense

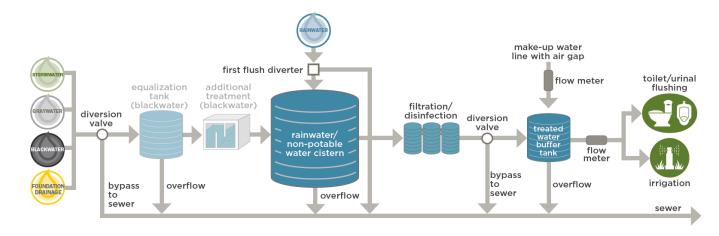
www.twitter.com/epawatersense

Email: <u>Schein.jonah@epa.gov</u> Helpline: <u>watersense@epa.gov</u> (866) WTR-SENS (987-7367)

Saving Water and Saving Energy in Growing Communities

Dan Cole, Sr. Director of Technical Services, IAPMO

2023 NECC Conference

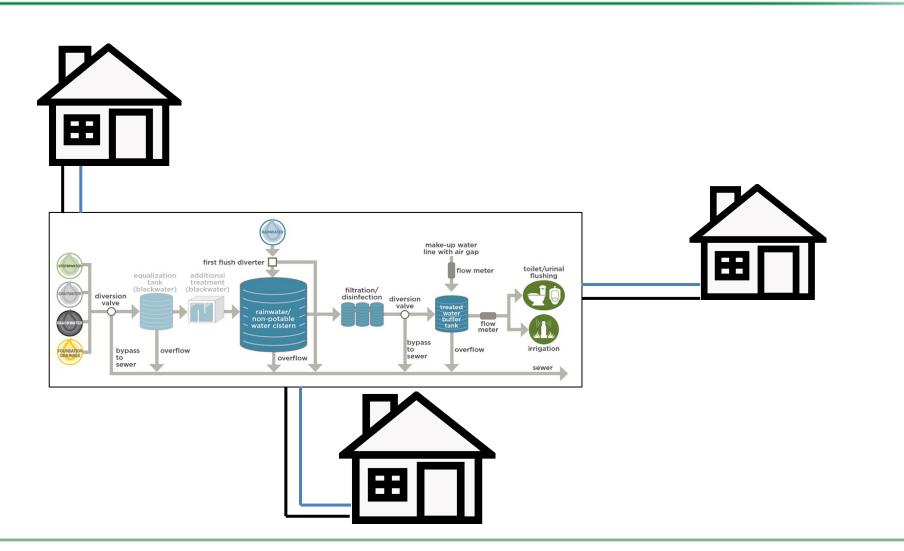

Saving Water Optimize water use practices attributed to the built environment

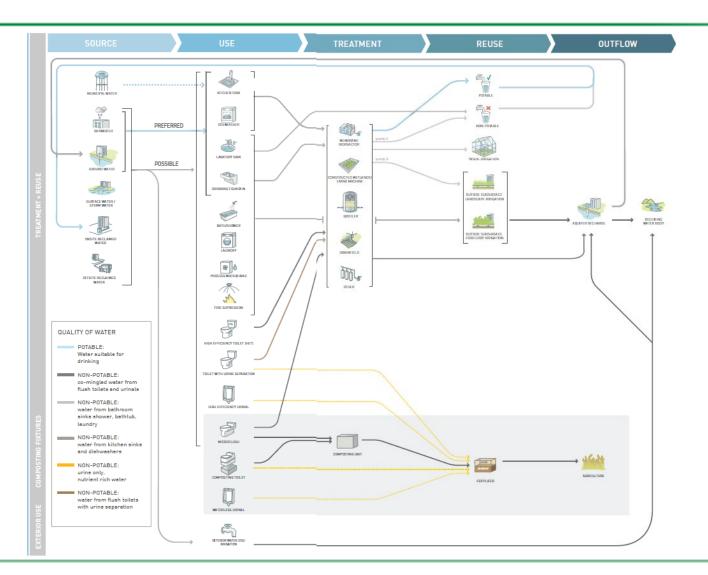
Water Conserving Fixtures

Onsite Treatment Systems

Saving Water

Optimize water use practices attributed to the built environment


Composting and Urine Diversion


Water Heating Design

Decentralized Potable and Non-Potable Water Systems

Decentralized Systems Integration

WaterReuse Research Foundation

Carbon Footprint Calculations

Flow (MGD)	Conventional Customized	Conventional Package	Membrane Customized	Natural Systems
0-0.005	33.1	24.1	73.3	5.3
0.005-0.025	15.0	14.0	25.0	5.0
0.025-0.05	6.4	10.0	15.0	4.5
0.05 - 0.1	5.0	3.8	6.0	3.4
0.1-0.5	4.0	3.7	4.0	2.0

Table 4.13. Power Consumption ±30% (kWh/kgal) up to Flow Range in MGD

Note: Power consumption does not include any pumping to the treatment plant. Values are considered approximate and should be used for guidance only. Actual power consumption will depend on additional processes and any additional pumping between stages at the treatment plant.

Water Demand Calculator

	President March 1				Thursday, April 27, 2023 2:53 PM		
FIXTURE GROUPS		ENTER TOTA FIXTURE NUMBER OF FIXTURE		PROBABILITY OF USE (%)	ENTER FIXTURE FLOW RATE (GPM)	MAXIMUM RECOMMENDED FIXTURE FLOW RATE (GPM)	COMPUTED RESULTS FOR PEAK PERIOD CONDITIONS
	1	Bathtub (no Shower)	0	1.00	5.5	5.5	
Bathroom Fixtures	2	Bidet	0	1.00	2.0	2.0	Total No. of Fixtures in Calculation
	3	Combination Bath/Shower	0	5.50	5.5	5.5	
	4	Faucet, Lavatory	0	2.00	1.5	1.5	
	5	Shower, per head (no Bathtub)	0	4.50	2.0	2.0	99 th Percentile Demand Flow
	6 Water Closet, 1.28 GPF Gravity Tar		0	1.00	3.0	3.0	
Kitchen Fixtures	7	Dishwasher	0	0.50	1.3	1.3	
Ritchen Fixtures	8	Faucet, Kitchen Sink	0	2.00	2.2	2.2	Hunter Number
Laundry Room Fixtures	9 Clothes Washer		0	5.50	3.5	3.5	
country noom matures	10	Faucet, Laundry	0	2.00	2.0	2.0	
Bar/Prep Fixtures	11	Faucet, Bar Sink	0	2.00	1.5	1.5	Stagnation Probability
	12	Fixture 1	0	0.00	0.0	6.0	
Other Fixtures	13	Fixture 2	0	0.00	0.0	6.0	
	14	Fixture 3	0	0.00	0.0	6.0	

WDC

LPS

RESULT

WDC

GPM

LPM

CLICK BUTTON

÷

Water Demand Calculator

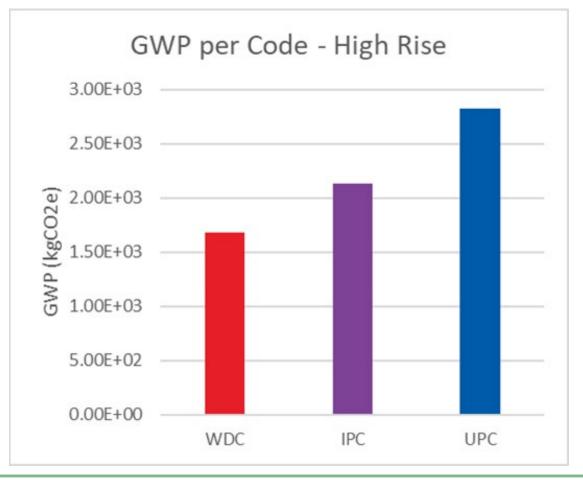
- Right size the water distribution system
- Reduces water volume in the piping system
- Reduced stagnation time in pipes
- Quicker hot water delivery time
- Reduces carbon emissions
- Saves energy

ARUP Report

Water Savings

Building Type	Unit Water Savings per fixture use (gallons)	Building Water Savings per unit per day (gallons)	Building Water Savings per building per day (gallons)	Annual Building Water Savings (gallons)
Single Unit	0.62	1.24	1.24	451
6-Unit	0.68	1.36	8.16	2,980
45-Unit	0.54	4.34	195	71,258

ARUP Report


Energy Savings as CO₂ emissions

	2021 Single Family Permits	EPA eGrid emissions factor (lb CO2/MWh)	Difference in tons CO2 between WDC & IPC
New York	11,099	233.5	248
Arizona	46,561	846.6	3,769
Missouri	13,941	1480.7	1,974

ARUP Report

Embedded Carbon Reduction

Cost Savings (US Dollars / Percent)

N		ΓY		PITTSBURGH			OKLAHOMA CITY		
Single-Family Home Savings \$ / %			Single-Family Home Savings \$ / %				Single-Family Home Savings \$ / %		
Savings vs.	Copper	PEX	Savings vs.	Copper	PEX		Savings vs.	Copper	PEX
UPC (\$)	\$401	\$56	UPC (\$)	\$299	\$48] [UPC (\$)	\$277	\$287
UPC (%)	2%	0.3%	UPC (%)	2%	0.4%] [UPC (%)	2%	3%
IRC (\$)	\$1,126	\$81	IRC (\$)	\$857	\$72	1 [IRC (\$)	\$804	\$74
IRC (%)	4%	0.4%	IRC (%)	6%	1%	1 [IRC (%)	7%	1%

NEW YORK CITY					
6-Unit Multi-Family Savings \$ / %					
Savings vs.	Copper	PEX			
UPC (\$)	\$3,995	\$9,482			
UPC (%)	3%	8%			
IPC (\$)	\$7,602	\$9,012		[
IPC (%)	5%	8%			

PITTSBURGH							
6-Unit Multi-Family Savings \$ / %							
Savings vs.	Copper	PEX					
UPC (\$)	\$3,150	\$8,509					
UPC (%)	4%	12%					
IPC (\$)	\$6,156	\$8,212					
IPC (%)	7%	12%					

OKLAHOMA CITY						
6-Unit Multi-Family Savings \$ / %						
Savings vs.	Copper	PEX				
UPC (\$)	\$3,037	\$7,821				
UPC (%)	5%	15%				
IPC (\$)	\$6,033	\$8,668				
IPC (%)	9%	16%				

PEX \$28,520 10% \$22,761 8%

NEW YORK CITY 45-Unit Multi-Family Savings \$ / %				PITTSBURGH				OKLAHOMA CITY				
				45-Unit Multi-Family Savings \$ / %			45-Unit Multi-Family Savings \$ / %					
Savings vs.	Copper	PEX	Savings vs.	Copper	PEX]	Savings vs.	Copper	P			
UPC (\$)	\$52,409	\$33,154	UPC (\$)	\$40,686	\$28,226]	UPC (\$)	\$38,800	\$28			
UPC (%)	8%	5%	UPC (%)	10%	8%]	UPC (%)	12%	1			
IPC (\$)	\$58,877	\$26,494	IPC (\$)	\$44,987	\$22,535]	IPC (\$)	\$42,441	\$22			
IPC (%)	9%	4%	IPC (%)	11%	6%		IPC (%)	13%	8			

Meter Downsize Example	<u>Minimum</u> Connection Fee Savings	<u>Maximum</u> Connection Fee Savings	<u>Mean</u> Connection Fee Savings	<u>Median</u> Connection Fee Savings	Number of Communities
3/4" to 5/8"	(\$7.99)	\$2,997.00	\$421.62	\$36.36	21
1" to 3/4"	\$0.00	\$17,564.00	\$1,883.05	\$887.00	35
1.5" to 1"	\$100.00	\$19,661.00	\$3,699.98	\$2,573.50	42
2" to 1.5"	\$0.00	\$33,571.00	\$4,598.31	\$2,812.00	42
3" to 2"	\$520.00	\$82,583.00	\$18, <mark>512.1</mark> 3	\$11,425.27	31
4" to 3"	\$0.00	\$148,649.00	\$24,648.19	\$12,357.00	30
6" to 4"	\$208.08	\$478,979.00	\$52,718.44	\$25,670.00	30
8" to 6"	\$35.52	\$210,000.00	\$58,349.85	\$33,899.65	27
10" to 8"	\$65.98	\$465,254.69	\$97,056.65	\$37,910.50	18
12" to 10"	\$65.97	\$580,272.00	\$137,762.23	\$45,900.00	13

Table 4: Summary Statistics for Connection Fee Savings Related to Downsizing Meter Size by One Size, as of 2020

Meter Downsize Example	<u>Minimum</u> Connection Fee Savings	<u>Maximum</u> Connection Fee Savings	<u>Mean</u> Connection Fee Savings	<u>Median</u> Connection Fee Savings	Number of Communities
1.5" to 5/8"	\$185.00	\$40,222.00	\$6,557.22	\$3,910.00	27
2" to 3/4"	\$250.00	\$57 <i>,</i> 808.00	\$9,687.79	\$4,920.00	37
3" to 1"	\$690.00	\$132,132.00	\$28,389.50	\$18,392.00	31
4" to 1.5"	\$300.00	\$264,803.00	\$48,021.76	\$25,730.00	31
6" to 2"	\$600.00	\$710,211.00	\$92,853.86	\$47,090.00	30
8" to 3"	\$2,160.00	\$435,154.00	\$133,123.43	\$79,290.00	24
10" to 4"	\$309.58	\$559,878.33	\$193,456.83	\$95,074.50	18
12" to 6"	\$167.47	\$994,752.00	\$255,949.32	\$108,760.00	14

Table 10: Summary Statistics for Connection Fee Savings Related to Downsizing Meter Size by Three Sizes, as of 2020

Copper Construction	Naples, FL (vs. IRC/IPC)	Portland, OR (vs. UPC)	San Diego, CA (vs. UPC)	San Francisco, CA (vs. UPC)	Tamps Bay, FL (vs. IRC/IPC)
Market Rating	Low Cost Market	High Cost Market	High Cost Market	High Cost Market	Low Cost Market
Single Family					
Material and Labor Savings (copper)	\$ 804	\$ 401	\$ 401	\$ 401	\$ 804
Meter Connection Fee (1" to 3/4")	\$ 2,124	\$ 3,412	\$ 3,375	\$ 17,564	\$ 4,200
Total	\$ 2,928	\$ 3,813	\$ 3,776	\$ 17,965	\$ 5,004
6-Unit Multi-Family					
Material and Labor Savings (copper)	\$ 6,033	\$ 3,995	\$ 3,995	\$ 3,995	\$ 6,033
Meter Connection Fee (IPC - 1-1/2" to 1") (UPC – 2" to 1")	\$ 3,540	\$ 18,769	\$ 19,656	\$ 37,635	\$ 3,500
Total	\$ 9,573	\$ 22,764	\$ 23,651	\$ 41,630	\$ 9,533
45-Unit Multi-Family					
Material and Labor Savings (copper)	\$ 42,441	\$ 52,409	\$ 52,409	\$ 52,409	\$ 42,441
Meter Connection Fee (IPC - 3" to 1-1/2") (UPC – 4" to 1-1/2")	\$ 15,576	\$ 68,249	\$ 73,164	\$ 150,059	\$ 31,500
Total	\$ 58,017	\$ 120,298	\$ 125,573	\$ 202,468	\$ 73,941

WE Stand

For more information visit

https://www.iapmo.org/we-stand

WE STAND

IAPMO's Water Efficiency and Sanitation Standard (WE•Stand) is an American National Standard, replacing the *Green Plumbing and Mechanical Code Supplement*. The publication of WE•Stand is noteworthy, as it is the first-ever standard that focuses solely on achieving safe and efficient water use in both residential and non-residential buildings.

WE•Stand Technical Committee: The publication of the WE•Stand is a result of the exceptional work completed by the WE•Stand Technical Committee. Comprised of leading industry experts, the provisions contained in this standard reflect centuries of collective experience and knowledge of the committee. With representation from code officials, manufacturers, plumbing engineers, contractors, the plumbing trades, water-efficiency proponents, water utilities, landscape irrigation experts, representatives of other associations and academia, the contents of the WE•Stand include the latest comprehensive provisions aimed towards achieving safe and reliable water efficiencies in and around buildings.

See below for some significant provisions contained in the current edition of the WE•Stand:

CLICK TO DOWNLOAD WATER DEMAND CALCULATOR TODAY

CLICK TO DOWNLOAD WATER DEMAND CALCULATOR TODAY

SYSTEM REQUIREMENTS FOR WATER DEMAND CALCULATOR

Water in High Performance Buildings

National Energy Codes Conference Chicago May 2-4, 2023

Gary Klein

gary@garykleinassociates.com

916-549-7080

Copyright 2023 Gary Klein, Gary Klein and Associates, Inc.

Key Principles

- Reduce the waste
- Improve the use
- Increase the efficiency

What Reduces Hot Water Use?

- End uses closer to water heater(s)
- Insulating hot water supply piping
- Truly "Instantaneous" water heaters
- Warmer incoming cold water
- Lower flow rate plumbing fixtures
- Lower volume plumbing appliances
- Using waste heat running down the drain to preheat cold water
- Anything else?

What Increases Hot Water Use?

- End uses further from water heater(s)
 - More volume to clear
- Uninsulated hot water supply piping
 - More uses start out with colder water
- Lower flow rate plumbing fixtures
 - Increases waste while waiting for hot water to arrive
- "Instantaneous" water heaters
 - Cold water runs through while ramping up to temp
- Colder incoming cold water
 - Increases the percent of hot water in the mix
- Anything else?

The most valuable water to conserve is hot water at the top of the tallest building, with the highest elevation, in the area with the greatest pressure drop.

Customers

- 1. What do they expect?
- 2. What do they want?
- 3. How do we increase customer satisfaction?

What Are We Aiming For?

1. People want:

- The water flowing from their showers and faucets to "feel" right.
- Their toilets to flush first time, every time.
- Clean clothes, dishes and bodies
- The service of hot water, as efficiently as possible.
- 2. It does not make sense to discuss efficiency until the desired service has been provided.

How Do We Increase Customer Satisfaction?

1. Reduce the Time-to-Tap

- a) Reduce the Distance from the Source to the Use
- b) Right-Size the Piping based on Modern Flow Rates and Realistic Simultaneity
- 2. Reduce the Pressure Drop
 - a) In the Pipe and Fittings
 - 1) Minimize the length
 - 2) Minimize the number of pressure-consuming fittings
 - b) In the Faucets and Shower Valves
- 3. Install Pressure-Independent Faucet Aerators and Showerheads

The Ideal Hot Water Distribution System

- Has the smallest volume (length and smallest "possible" diameter) of pipe from the source of hot water to the hot water outlet.
- Sometimes the source of hot water is the water heater, sometimes a trunk line.
- For a given layout (floor plan) of hot water locations the system will have:
 - The shortest buildable trunk line
 - Few or no branches
 - The shortest buildable twigs
 - The fewest plumbing restrictions
 - Insulation on all hot water pipes, minimum R-4

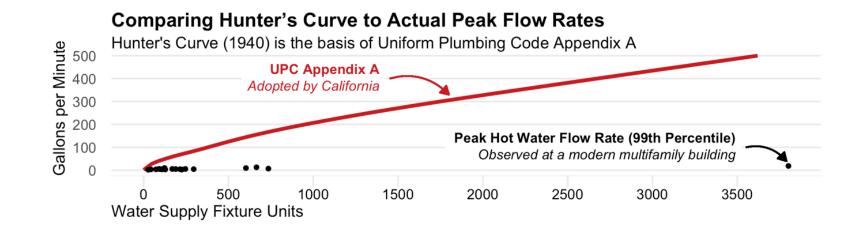
How Long Should We Wait?

Volume in the Pipe	Minimum Time-to-Tap (seconds) at Selected Flow Rates						
(ounces)	0.25 gpm	0.5 gpm	1 gpm	1.5 gpm	2 gpm	2.5 gpm	
1	4	1.9	0.9	0.6	0.5	0.4	
2	8	4	1.9	1.3	0.9	0.8	
8 4	15	8	4	2.5	1.9	1.5	
1 <mark>68</mark>	30	15	8	5	4	3	
24 12	45	23	11	8	6	5	
32 16	60	30	15	10	8	6	
64 32	120	60	30	20	15	12	
12864	240	120	60	40	30	24	

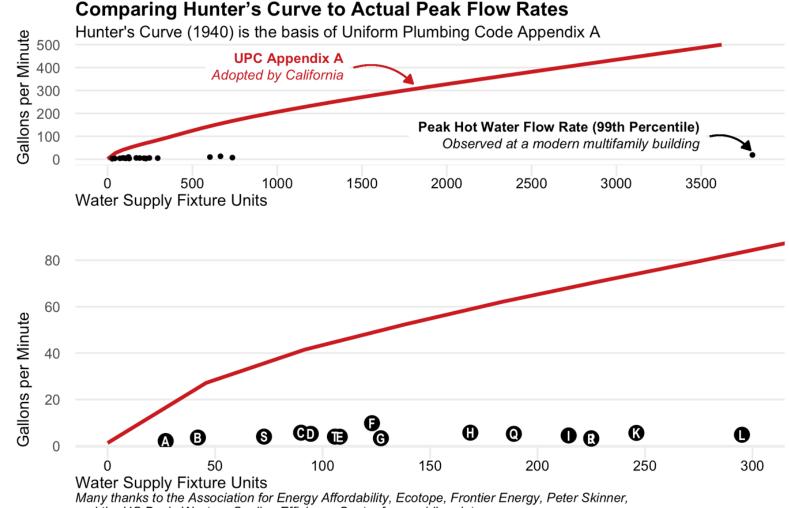
Cut the pipe volume in half to get these times

ASPE Time-to-Tap Performance Criteria

Acceptable Performance	1 – 10 seconds
Marginal Performance	11 – 30 seconds
Unacceptable Performance	31+ seconds

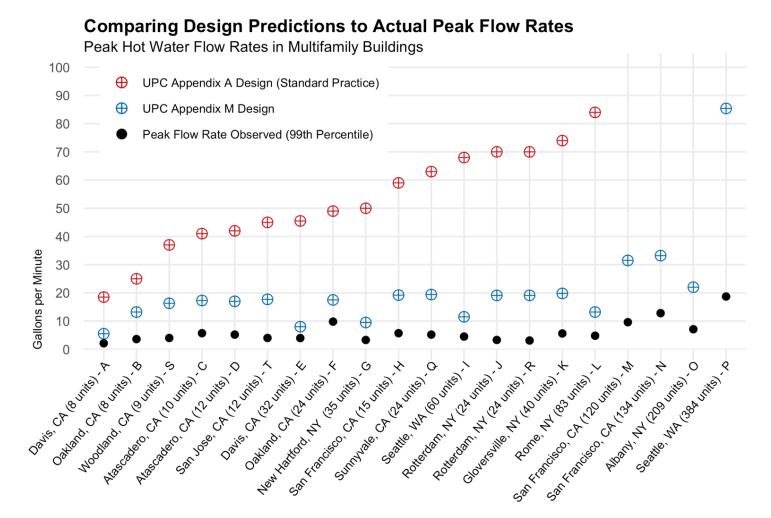

Source: Domestic Water Heating Design Manual – 2nd Edition, ASPE, 2003, page 234

For volume per foot see 2018 UPC Table L 502.7 or 2018 IPC Table E 202.1


43

43

Peak Flow Rates-Measured vs Predicted



Peak Flow Rates-Measured vs Predicted

and the UC Davis Western Cooling Efficiency Center for providing data.

Peak Flow Rates-Measured vs Predicted

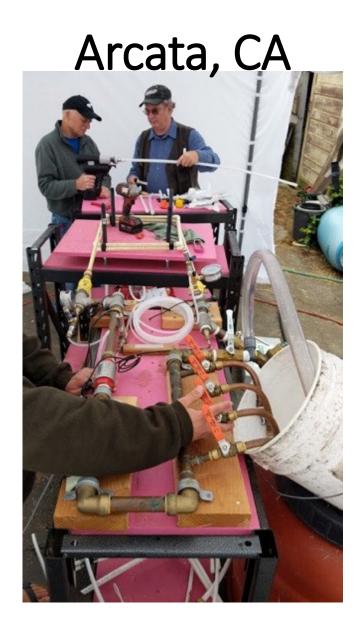
Many thanks to the Association for Energy Affordability, Ecotope, Frontier Energy, Peter Skinner, and the UC Davis Western Cooling Efficiency Center for providing data.

The Housing and Community Development proposal to include Appendix M from the 2021 UPC into the California Plumbing Code was approved by California Building Standards Commission's PEME-CAC March 15-16, 2023

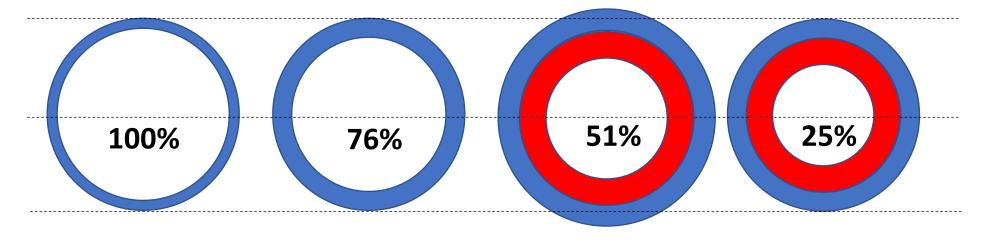
The next steps are 45- and 15-day language. If all goes well, the proposal will be approved by the CBSC sometime this summer and will become code in the middle of 2024.

https://www.dgs.ca.gov/BSC/Rulemaking/2022-Intervening-Cycle/2022-CAC-<u>Mtgs</u>

Why Your Shower Feels Wimpy


Let's Look at a 2nd Floor Shower

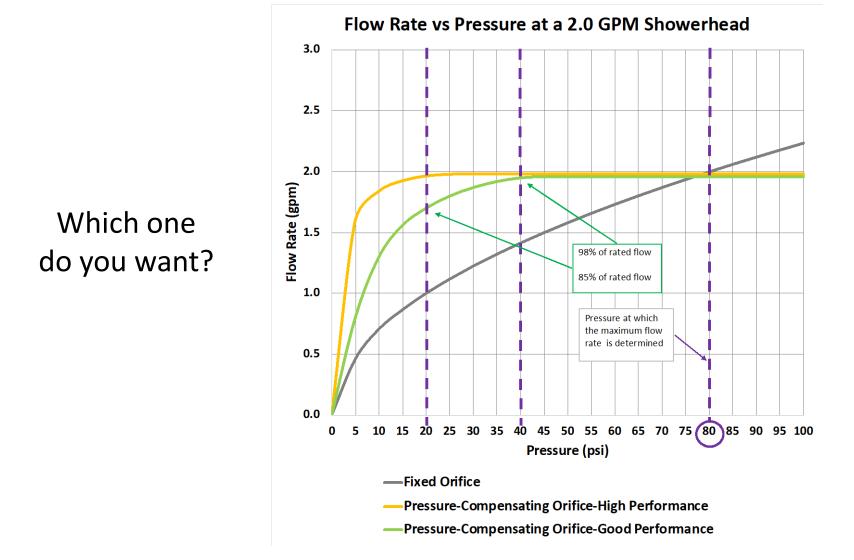
	PSI	PSI
Street Pressure	60	80
Go up 20 feet	- 9	- 9
Tub/Shower Valve	- 11	- 11
Losses in the piping	- 20	- 20
Total of the Pressure Losses	- 40	- 40
Residual Pressure at the shower head	20	<mark>40</mark>


Showerhead flow rates are determined at 80 psi. For fixed orifice showerheads, the flow rate will be much less Flow rate at 40 psi = 0.7 * Flow Rated at 80 psi Flow rate at 20 psi = 0.49 * Flow Rated at 80 psi

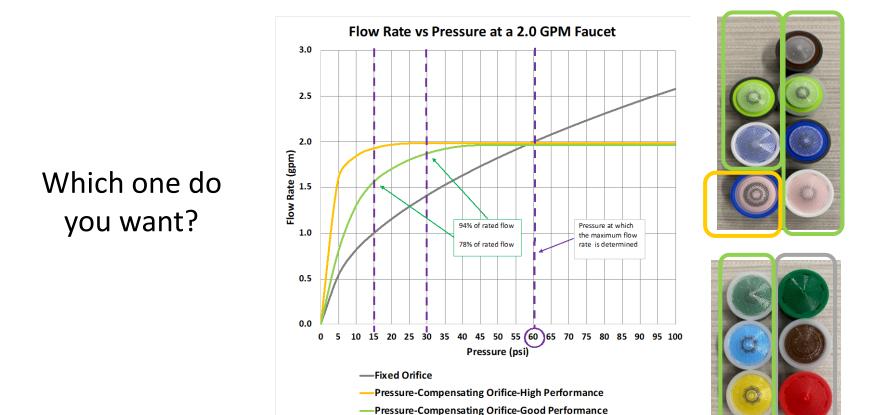
Similar reductions for faucets with flow rated at 60 psi

Relative Size of the Waterway for Selected 0.5inch Pipe and Fittings

Copper Type-L	PEX or CPVC	PEX Cold-	PEX Crimp
		Expansion	or Press


0.5 inch Nominal Pipe (inches)					
Size	Nom OD	Wall Ave	Tol+/-	Nom ID	
1/2 PEX ASTM F876	0.625	0.070	0.010	0.475	
1/2 CPVC, ASTM D2846	0.625	0.07	0.01	0.475	
1/2 inch Copper Type-L ASTM B88	0.625	0.040	0.004	0.545	

Target Flow Rates


Target Flow Rates for 0.375 Inch Pipe					
Flow Velocity (ft/s)	2	4	6	8	10
	Flow Rate Target (gpm)				
0.375 inch PEX	0.60	1.20	1.80	2.40	3.00
0.375 inch CPVC	0.63	1.27	1.90	2.54	3.17
0.375 inch Copper	0.91	1.81	2.72	3.62	4.53

Target Flow Rates for 0.5 Inch Pipe					
Flow Velocity (ft/s)	2	4	6	8	10
	Flow Rate Target (gpm)				
0.5 inch PEX	1.10	2.21	3.31	4.42	5.52
0.5 inch CPVC	1.15	2.30	3.45	4.61	5.76
0.5 inch Copper	1.45	2.91	4.36	5.82	7.27

Pressure Independent Showerheads

Pressure Independent Faucets

Select Good or High-Performance Faucet Aerators to Increase Customer Satisfaction.

53

Will more stringent codes and standards get us to a more resilient lower carbon future? Given human nature, it is our job to provide the infrastructure that supports efficient behaviors.

Questions?