Embodied Carbon in Energy Codes? Yes, No, Maybe, I Don't Know

Michael Waite National Energy Codes Conference | Chicago, IL May 4, 2023

Overview

- What is the Potential for Embodied Carbon and Codes?
- Material-Focus | Prescriptive and/or Mandatory
- Whole Building Lifecycle | Performance
- What About Energy Codes?
- What Next?

What is Embodied Carbon?

- Material extraction
- Manufacturing
- Transportation
- Construction
- Usage (not "operation")
- Maintenance and repair
- Deconstruction
- Waste processing

Advisory Public Review draft of BSR/ASHRAE/ICC Standard 240P-202X, available at https://osr.ashrae.org/

Why Embodied Carbon?

Annual Global CO₂ Emissions

© Architecture 2030. All Rights Reserved. Data Source: IEA (2022), Buildings, IEA, Paris

Building Construction Industry and Other Construction Industry represent emissions from concrete, steel, and aluminum for buildings and infrastructure respectively.

Total Carbon Emissions of **Global New Construction** with no building sector interventions

© Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Concrete (11%) + Steel (10%) + Aluminum (2%) = 23% of Total Global CO2!

Why Embodied Carbon and Codes?

American Council for an Energy-Efficient Economy

- ICC has an Energy and Carbon Advisory Council guiding the I-codes
- ASHRAE has committed to a net zero carbon 90.1 by 2031 version

EEE:: + Demand-side push to reduce industrial emissions

City and County of Denver. 2021. Denver's Building Sector Embodied

What's stopping us?

ACEEE's 2022 Summer Study Informal Session asked:

- "Are we ready for embodied carbon in building codes?"
- "Are we ready to compare operational and embodied carbon in buildings?"
- 40+ participants: designers, researchers, policymakers and manufacturers

1. The goal is a whole building life cycle assessment (WBLCA) that can be used to set standards and code provisions for embodied carbon. It is important to chart a pathway to that end.

LCA Tools Applicable to U.S.

Tool	Provider	Cost of use	Stand-alone versus embedded	Database used	Focus level	Life-cycle stage	Methodology
Athena	Athena Sustainable Material Institute	Free	Standalone	GaBi database	Whole building	A1-A3, A1-C4	Process LCA
GaBi	Thinkstep; Building Transparency (as of 2021)	No price information provided	Standalone	GaBi database	Material	A1-A3, A1-C4	Process LCA
Tally	Building Transparency, KT Innovations, thinkstep, and Autodesk	USD 695/year; free for non- commercial educational and research use	Plug-in	GaBi database	Whole building	A1–C4	Process LCA
Simapro	Pre Sustainability consultants	No price information provided	Standalone	ecoinvent, Japan database, NREL LCI	Material	A1–A3	Process LCA
BEES	NIST	Free	Standalone	NREL LCI	Material, Product	A1–A3	Economic I-O
EC3	Building Transparency	Free	Standalone	EPD data	Material	A1–A3	Process LCA
One Click LCA	One Click LCA	No price information provided	Plug-in; Standalone	Varies	Whole building	A1–C4	Process LCA

Esram and Hu. 2021. Knowledge Infrastructure: The Critical Path to Advance Embodied Carbon Building Codes aceee.org/white-paper/2021/12/knowledge-infrastructure-critical-path-advanceembodied-carbon-building-codes.

Common Environmental Product Databases

Database	Cost of use	Stand-alone versus embedded	No. of datasets	Region	Data source	Life-cycle stage
ecoinvent ^a	EUR 3,800 (USD 4,482)	Standalone, Embedded	18,000+	Global, Europe focus	Secondary ^b	A1–A3, A1– A5, A1–C4
U.S. National Renewable Energy Laboratory (NREL) LCI Database ^c	Free (companies or agencies pay to publish data)	Standalone	600+	U.S. focus	Primary	A1–A3, A1- A5, A1–C4
USDA LCA Digital Commons	Free (manufactures and agencies pay to publish data)	Standalone	300+	U.S. focus	Primary	A1–A3, A1- A5, A1–C4
NIST BEES database	Free	Standalone, Embedded	Unknown	U.S. focus	Secondary	A1–A3, A1- C4
Quartz ^e	Free	Standalone	102 products	U.S. focus	Secondary (no lingered maintained)	
GaBi database	USD 3,000	Standalone, Embedded	15,000+	Global, Europe focus	Primary and Secondary	A1–A3, A1- A5, A1–C4
Athena database	Free	Standalone	200,000+ (building and construction materials specific)	U.S. and Canada focus	Secondary	A1–A5, A1- C4
Carnegie Mellon database ^f	Free	Standalone	3,500+	U.S., Canada, Germany, Spain, China	Secondary	A1–A3, A1- A5
Environmental Product Declaration (EPD) library	Free	Standalone	149 products ⁹	Global	Primary	Vary
Embodied Carbon in Construction Calculator (EC3)	Free	Standalone	47,000+	Global, with a U.S. focus	Primary	A1–A3 (as of 2021)

Sources: ^a Wernet et al. 2016. ^b ecoinvent 2021. ^c NREL 2021. ^d Curran et al. 2002. ^e Quartz 2015. ^f Greenhouse Gas Protocol 2021b. ^g Greenhouse Gas Protocol 2021c.

Sidebar: Environmental Product Declarations (EPDs)

EPD Development Process

Product Category Rules (PCR)

"Set of specific rules, requirements, and guidelines for developing Type III environmental product declarations for one or more product categories" (ISO 14025)

Life Cycle Assessment (LCA)

"Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle" (ISO 14040)

Environmental Product Declaration (EPD)

"Providing quantified environmental data using predetermined parameters and, where relevant, additional environmental information" (ISO 14025)

Product-Specific EPDs

Program Operator	NSF International				
	789 N. Dixboro Ann Arbor, MI 48105				
	www.nsf.org				
General Program instructions and Version Number	Part A: Life Cycle Assessment Calculation Rules and Report Requirements,				
	Version 2.0				
Manufacturer Name and Address	GAF				
	1 Campus Drive				
	Parsippany, NJ 07054				
Declaration Number	EPD10151				
Declared Product and Functional Unit	EnergyGuard [™] NH Polyiso Roof Insulation				
	1 m2 of installed insulation material with a thickness that gives an average				
	thermal resistance RSI = 1m ² KW and with a building service life of 75 years				
Reference PCR and Version Number	Part A: Life Cycle Assessment Calculation Rules and Report Requirements,				
	Version 3.1				
	Part B: Building Envelope Thermal Insulation EPD Requirements UL 10010-1				
Product's intended Application and Use	Thermal Insulation for Roofing Applications				
Product RSL	75 years as per PCR guidelines				
Markets of Applicability	North America, Europe				
Date of Issue	06/21/2018				
Period of Validity	5 years from date of issue				

Industry-Wide EPDs

ENVIRONMENTAL PRODUCT DECLARATION Polyiso Roof Insulation Boards

Julie Sinistore, "Environmental Product Declarations: What Are They?" WSP, 2017, http://us.wsp-pb.com/blogs/green-scene/lca/environmental-product-declarations-what-are-they-2/

GENERAL INFORMATION

EPD Program Operator	NSF Certification, LLC 789 N. Dixboro Road Ann Arbor, Michigan, 48105, USA www.nsf.org
Refererence PCRs	Product Category Rules for Building-Related Products and Services Part A: Life Cycle Assessment Calculation Rules and Report Requirements (UL 10010, Version 3.2), and Product Category Rule (PCR) Guidance for Building-Related Products and Services Part B: Building Thermal Insulation EPD Requirements (UL10010-1, Version 2.0), and ISO 21930: 2017
Declaration Holder	Polyisocyanurate Insulation Manufacturers Association 3330 Washington Boulevard, Suite 200 Arrington, Virginia, 22201, USA www.polyiso.org
LCA & Declaration Preparer	Shelly Severinghaus, LCACP Long Trail Sustainability 830 Taft Road

2. There is an immediate need to fill gaps and reduce uncertainty in data reported at the material level, but initial standards can likely be set for the Product Stage (Modules A1-A3) for a handful of materials.

Exhibit 6 Life-Cycle Assessment Phases

Source: RMI

Chris Magwood and Tracy Huynh, *The Hidden Climate Impact of Residential Construction*, RMI, 2023, https://rmi.org/insight/hidden-climate-impact-of-residential-construction/

Figure 47: Total tCO₂e per material across the first five case studies

Embodied Carbon by Material/Product

Figure 48: Total tCO₂e per material for case study 06 – Residential timber building

WBCSD and Arup, "Net-zero buildings: Where do we stand?"

https://www.wbcsd.org/Programs/Cities-and-Mobility/Sustainable-Cities/Transforming-the-Built-Environment/Decarbonization/Resources/Net-zero-buildings-Where-do-we-stand

3. Stepping up from the material level to building envelope assemblies, fenestration products, HVAC equipment and other building components is likely a beneficial intermediate phase.

Embodied Carbon in Building Enclosures: Why It Matters. Laura Karnath (Walter P. Moore) https://www.walterpmoore.com/embodied-carbonbuilding-enclosures-why-it-matters

MEP 204 Committing to Ze
Embodied carbon in building services: a calculation methodology
TM65: 2021

٢O

4. Code provisions aimed at reducing embodied carbon – and potentially prioritizing existing buildings – should not allow energy efficiency to be traded off.

- XPS (HFC) only
- Fiberglass/XPS (HFC)
- XPS (low GWP) only
- Fiberglass/XPS (low GWP)
- Mineral wool board only
- Cellulose/wood fiber board
- Wood fiber board only
- Other

5. Embodied carbon benchmarking and disclosure could be a useful step towards whole building standards by building capacity and improving data.

Above: "Guidance on Disclosure," Carbon Leadership Forum, https://carbonleadershipforum.org/guidance-on-embodied-carbondisclosure/

Right: http://www.cbei.psu.edu/benchmarking-and-disclosure/index.html

- 6. To support whole building life cycle code provisions, we need:
- Improved and expanded materiallevel data,
- widely accessible and applicable modeling tools,
- a trusted central data and information repository, and
- more better-trained LCA modelers

Components

Figure 1. Embodied carbon assessment knowledge matrix

Esram and Hu. 2021. Knowledge Infrastructure: The Critical Path to Advance Embodied Carbon Building Codes aceee.org/white-paper/2021/12/knowledge-infrastructure-critical-path-advanceembodied-carbon-building-codes.

Emerging Embodied Carbon Policies in the U.S.

LEED v4.1 and Green Globes Rating Systems

"What You Need to know about Building Materials Under LEED v4.1," CaraGreen, https://www.caragreen.com/what-you-need-to-know-about-building-materials-under-leed-v4-1/

Public Project Procurement Policies – "Buy Clean"

- Generally aimed at big ticket items
 - Concrete, steel, glass, some insulation
- "Like to like" not comparing materials
- 5 states with active policies
 - California, Oregon, Washington, Minnesota, Colorado
- Some localities
- Federal government in guidance and scoping process (incl. IRA funding)

Green Codes – CalGreen

- Mandatory refrigerant GWP limits
- Voluntary provisions aimed at reduced embodied carbon in materials
- Proposed <u>whole building LCA</u> provisions aimed at reducing embodied carbon ~10% in commercial buildings >50,000 sf
 - In line with AB 2446 (2022)

Green Codes – IgCC / ASHRAE 189.1

- International Green Construction Code "powered by" ASHRAE Standard 189.1
- Proposed material-focused provisions:
 - Mandatory disclosure of Cradle-to-Grate (A1-A3) for subset of installed materials [Add z]
 - Jurisdiction option: Material procurement Cradle-to-Gate emissions limits [Add ak]

Building codes

American Council for an Energy-Efficient Economy

• Just one! Only concrete! Marin County, CA

	Cement limits for use with any compliance method 19.07.050.2 through 19.07.050.5	Embodied Carbon limits for use with any compliance method 19.07.050.2 through 19.07.050.5
Minimum specified compressive strength f'c, psi (1)	Maximum ordinary Portland cement content, lbs/yd ³ (2)	Maximum embodied carbon kg CO2e/m³, per EPD
up to 2500	362	260
3000	410	289
4000	456	313
5000	503	338
6000	531	356
7000	594	394
7001 and higher	657	433
up to 3000 light weight	512	578
4000 light weight	571	626
5000 light weight	629	675
Notes (1) For concrete strengths embodied carbon limit	between the stated values, use linear inter	polation to determine cement and/or

Marin County Low Carbon Concrete Requirements: https://www.marincounty.org/-

/media/files/departments/cd/planning/sustainability/low-carbon-concrete/12172019-update/low-carbon-concrete-code.pdf

So, what about <u>Energy</u> Codes?

- Historically we have not supported embodied carbon in energy codes
 - Energy codes set minimum <u>energy efficiency</u> requirements
 - Non-energy usage data reliability/comparability
- Reconsidering with...
 - 1. Energy codes shifting to an emissions basis and decarbonization focus
 - 2. Efforts to improve data reliability/comparability
 - 3. Growth of buy clean policies and guidelines

One example of attempt in energy code...

Optional credits for reporting and/or

reducing insulation embodied carbon

90.1 Work Plan Includes Only Refrigerants

A proposed possible starting point

Michael Waite, "Rethinking Model Energy Codes for Net Zero Carbon Buildings," ACEEE, 2023, https://www.aceee.org/blogpost/2023/04/rethinking-modelenergy-codes-net-zero-carbonbuildings

Need: Standardization with comparable data

- Harmonization and standardization of PCRs
- Comparability of EPDs across products
- Comparability of embodied and operational emissions
 - International standards and guidelines contribute to knowledgebase
 - ASHRAE/ICC Standard 240P in development need this to work for codes!

Drafts are posted and comments can be made until May 21st at: osr.ashrae.org.

Need: Energy Code "Energy Credits" >>> Carbon Reduction Credits

ID	Energy	Section	0A 0B 1A			Energy						
U	Measure	Section			1A	1A ID		Credit Abbreviated	Section	0 A	0B	1A
E01	Envelope Performance	C406.2.1.1						Title				
	UA					[R01	Renewable Energy	C406.3.1	9	15	11
E02	reduction (15%)	C406.2.1.2	8	13	7	-	G01	Lighting load management	C406.3.2	16	7	9
E03	Envelope leak reduction	C406.2.1.3	15	10	12		G02	HVAC load management	C406.3.3	42	41	21
E04	Add Roof Insulation	C406.2.1.4	1	1	1	-	G03	Automated shading	C406.3.4	11	x	7
E05	Add Wall Insulation	C406.2.1.5	10	10	6	_	G04	Electric energy	C406.3.5	10	10	10
E06	Improve Fenestration	C406.2.1.6	7	7	4			storage				
H01	HVAC Performance	C406.2.2.1	20	19	16	-	G05	energy storage	C406.3.6	28	6	31
H02	Heating efficiency	C406.2.2.2	x	x	x	_	G06	SHW energy storage	C406.3.7	17	17	19
H03	Cooling efficiency	C406.2.2.3	7	6	4		G07	Building thermal	C406.3.8	7	2	11
H04	Residential HVAC control	C406.2.2.4	9	10	8			mass				
H05	DOAS/fan control	C406.2.2.5	32	31	27		Sna	pshots fron	n 2024 II	ECC		
W01	SHW preheat recovery	C406.2.3.1 a	61	63	74		Puk htti	blic Comme ps://www.ic	nt Draft a	#1: g/w	/p-	
N02	Heat pump water heater	C406.2.3.1 b	50	52	62	content/uploads/						
N03	Efficient gas water heater	C406.2.3.1 c	38	39	46	110122.pdf						

•	Menu of	options	beyond	minimum	requirements
---	---------	---------	--------	---------	--------------

 Must attain a total amount by building type and climate zone

 \succ Translate to emissions reduction basis

➢Life cycle emissions

 \succ What's the baseline?

Need: Benchmarks, Prototypes, Baselines

CLF WBLCA Benchmark Study v2

Need: Coordination across energy and building codes

<text><text><section-header><text><text><text><text><text><text><text><text><text>

One possibility:

Set limits in IBC/IRC

- Flexibility to reduce whole building emissions in energy codes
- Analogue of reduced flow water fixtures

Current stage is likely testing through "green" codes

Summary

- Embodied carbon increasing share of building lifecycle emissions
- Whole building, whole life emissions standards are the goal
- Need data improved and gaps filled, but there are steps we can take now
- Some material-focused policies are emerging in the U.S.
- There could be a role for embodied carbon in energy codes
 - Need: Carbon metrics, standardization, benchmarks, flexibility
 - Energy codes and building codes likely need to work in concert

Michael Waite, PhD, PE Senior Manager, Buildings Program, ACEEE mwaite@aceee.org

Embodied Carbon in Canadian Model Codes May 4, 2023

Agenda

 Background Canadian Model Codes Model Code Development •Evolution of Model Codes Embodied Carbon in Canada Preliminary Research NRCan's Material Carbon Estimator Tool Findings & Conclusions

Canada

ada

Canadian Model Codes

- National Building Code & National Energy Code for Buildings
 - AHJs responsible for the adoption of building codes
 - Reconciliation Agreement on Construction Codes
- Model Code Development Process Provinces and Territories provide policy direction Technical Committees, Task Groups and Working Groups
 - Consensus-based, accessible and transparent

ada

Canada

Ressources naturelles

Evolution of Model Energy Codes in Canada

- "Achieving Real Net-Zero Emission Homes" Operational + Embodied carbon emissions
 - Three archetypes in five climate zones
 - Bungalow, 2-Storey and Row House End Unit
 - Three different Energy Code Tiers
 - Tier 3, Tier 4 and Tier 5
 - Four material palettes
 - High Carbon, Mid-Range, Best Available and Best Possible

Achieving Real Net-Zero Emission Homes:

Embodied carbon scenario analysis of the upper tiers of performance in the 2020 Canadian National Building Code

ada

Canada

NRCan's Material Carbon Emissions Estimator (MCE2)

- Estimation of Overall Carbon Emissions
 - Pulls data from HOT2000 energy simulation tool
 - User inputs material choice(s) for each component
 - GWP of each material is calculated from database of publicly available EPDs
 - Limited to "Product Stage" (A1-A3)
 - Subset of building materials
 - No waste factors included
- Intended to support design decision-making and capacity building

Project Carbon Content

		Energy			
Energy Co	Energy Consumption				
Elec. kWh/yr	N. Gas m ³ /yr	Elec. kWh/yr			
8195	1781	0			
Propane L/yr	Oil L/yr	Wood kg/yr			
0	0	0			

To override energy GHG intensities, use the Energy GHG tab.

Canada

ada

MCM – Top 10 Highest MCE Materials

Toronto, 2-Storey, Tier 4

Canada

BAM – Top 10 Highest MCE Materials

Toronto, 2-Storey, Tier 4

Canada

Row house end unit Prince Albert High Carbon Material Selection Tier 5 Embodied Carbon Intensity 621 kg CO₂e/m² Embodied Carbon 92 t CO₂e

Row house end unit Quebec City / Prince Albert

Best Possible Carbon Material Selection Tier 5 Embodied Carbon Intensity -48.0 kg CO₂e/m² Embodied Carbon -7 t CO₂e

Natural Resources Ressource Canada Canada

Ressources naturelles Canada anada

9

Carbon Use Intensity (30 yrs) by City, NBC Tier and MCE Level (2-Storey Home)

Natural Canada es Ressources naturelles Canada Canada

Subsequent Research on Embodied Carbon

Municipal studies of as-built homes

- Mapped closely with preliminary findings
- Demonstrated regional differences linked to architectural tendencies

Dataset	Material Carbon Emissions Intensity (kg CO2e/m2)						
	Highest	Average	Lowest				
NRCan Archetypes	513	150	2*				
Nelson & Castlegar, BC	309	150	72				
Toronto, ON	561	189	116				

Canada

anada

Findings & Conclusions

- Material Carbon Emissions represents a significant, mostly overlooked and unregulated pool of GHGs
- Scope of Application and Methodology are important
- Consider availability of Data
- Mind the Regulatory Overlap
- Metrics matter!
- Net-Zero solutions vary by jurisdiction

Canada

ada

Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2022

